673 lines
21 KiB
Rust

//! Project: CMtec CMDR joystick 24
//! Date: 2023-08-01
//! Author: Christoffer Martinsson
//! Email: cm@cmtec.se
//! License: Please refer to LICENSE in root directory
#![no_std]
#![no_main]
mod button_matrix;
mod layout;
mod status_led;
mod usb_joystick_device;
use button_matrix::ButtonMatrix;
use core::convert::Infallible;
use cortex_m::delay::Delay;
use dyn_smooth::{DynamicSmootherEcoI32, I32_FRAC_BITS};
use embedded_hal::adc::OneShot;
use embedded_hal::digital::v2::*;
use embedded_hal::timer::CountDown;
use fugit::ExtU32;
use libm::powf;
use panic_halt as _;
use rp2040_hal::{
adc::Adc,
gpio::{Function, FunctionConfig, PinId, ValidPinMode},
pio::StateMachineIndex,
};
use status_led::{StatusMode, Ws2812StatusLed};
use usb_device::class_prelude::*;
use usb_device::prelude::*;
use usb_joystick_device::{JoystickConfig, JoystickReport};
use usbd_human_interface_device::prelude::*;
use waveshare_rp2040_zero::entry;
use waveshare_rp2040_zero::{
hal::{
clocks::{init_clocks_and_plls, Clock},
pac,
pio::PIOExt,
timer::Timer,
watchdog::Watchdog,
Sio,
},
Pins, XOSC_CRYSTAL_FREQ,
};
// Public constants
pub const BUTTON_ROWS: usize = 5;
pub const BUTTON_COLS: usize = 5;
pub const NUMBER_OF_BUTTONS: usize = BUTTON_ROWS * BUTTON_COLS;
pub const AXIS_MIN: u16 = 0;
pub const AXIS_MAX: u16 = 4095;
pub const AXIS_CENTER: u16 = AXIS_MAX / 2;
pub const NBR_OF_GIMBAL_AXIS: usize = 4;
pub const GIMBAL_AXIS_LEFT_X: usize = 0;
pub const GIMBAL_AXIS_LEFT_Y: usize = 1;
pub const GIMBAL_AXIS_RIGHT_X: usize = 2;
pub const GIMBAL_AXIS_RIGHT_Y: usize = 3;
// Analog smoothing settings.
pub const BASE_FREQ: i32 = 2 << I32_FRAC_BITS;
pub const SAMPLE_FREQ: i32 = 1000 << I32_FRAC_BITS;
pub const SENSITIVITY: i32 = (0.01 * ((1 << I32_FRAC_BITS) as f32)) as i32;
// Public types
#[derive(Copy, Clone, Default)]
pub struct Button {
pub pressed: bool,
pub fn_mode: u8,
}
#[derive(Copy, Clone)]
pub struct GimbalAxis {
pub value: u16,
pub idle_value: u16,
pub max: u16,
pub min: u16,
pub center: u16,
pub fn_mode: u8,
pub deadzone: (u16, u16, u16),
pub expo: f32,
}
impl Default for GimbalAxis {
fn default() -> Self {
GimbalAxis {
value: AXIS_CENTER,
idle_value: AXIS_CENTER,
max: AXIS_MAX,
min: AXIS_MIN,
center: AXIS_CENTER,
fn_mode: 0,
deadzone: (50, 50, 50),
expo: 0.2,
}
}
}
#[entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = Watchdog::new(pac.WATCHDOG);
// Configure clocks and PLLs
let clocks = init_clocks_and_plls(
XOSC_CRYSTAL_FREQ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
let core = pac::CorePeripherals::take().unwrap();
// The single-cycle I/O block controls our GPIO pins
let sio = Sio::new(pac.SIO);
// Set the pins to their default state
let pins = Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// Enable adc
let mut adc = Adc::new(pac.ADC, &mut pac.RESETS);
// Configure ADC input pins
// Have not figured out hov to store the adc pins in an array yet
// TODO: Find a way to store adc pins in an array
let mut adc_pin_left_x = pins.gp29.into_floating_input();
let mut adc_pin_left_y = pins.gp28.into_floating_input();
let mut adc_pin_right_x = pins.gp27.into_floating_input();
let mut adc_pin_right_y = pins.gp26.into_floating_input();
// Setting up array with pins connected to button rows
let button_matrix_row_pins: &[&dyn InputPin<Error = Infallible>; BUTTON_ROWS] = &[
&pins.gp11.into_pull_up_input(),
&pins.gp13.into_pull_up_input(),
&pins.gp9.into_pull_up_input(),
&pins.gp12.into_pull_up_input(),
&pins.gp10.into_pull_up_input(),
];
// Setting up array with pins connected to button columns
let button_matrix_col_pins: &mut [&mut dyn OutputPin<Error = Infallible>; BUTTON_COLS] = &mut [
&mut pins.gp4.into_push_pull_output(),
&mut pins.gp5.into_push_pull_output(),
&mut pins.gp6.into_push_pull_output(),
&mut pins.gp7.into_push_pull_output(),
&mut pins.gp8.into_push_pull_output(),
];
// Create button matrix object that scans all buttons
let mut button_matrix: ButtonMatrix<BUTTON_ROWS, BUTTON_COLS, NUMBER_OF_BUTTONS> =
ButtonMatrix::new(button_matrix_row_pins, button_matrix_col_pins, 5);
// Initialize button matrix
button_matrix.init_pins();
// Configure USB
let usb_bus = UsbBusAllocator::new(waveshare_rp2040_zero::hal::usb::UsbBus::new(
pac.USBCTRL_REGS,
pac.USBCTRL_DPRAM,
clocks.usb_clock,
true,
&mut pac.RESETS,
));
let mut usb_hid_joystick = UsbHidClassBuilder::new()
.add_device(JoystickConfig::default())
.build(&usb_bus);
let mut usb_dev = UsbDeviceBuilder::new(&usb_bus, UsbVidPid(0x1209, 0x0002))
.manufacturer("CMtec")
.product("CMDR Joystick")
.serial_number("0001")
.build();
// Create status LED
let (mut pio, sm0, _, _, _) = pac.PIO0.split(&mut pac.RESETS);
let mut status_led = Ws2812StatusLed::new(
pins.neopixel.into_mode(),
&mut pio,
sm0,
clocks.peripheral_clock.freq(),
);
// Create timers/delays
let timer = Timer::new(pac.TIMER, &mut pac.RESETS);
let mut delay = Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
let mut usb_hid_report_count_down = timer.count_down();
usb_hid_report_count_down.start(10.millis());
let mut scan_count_down = timer.count_down();
scan_count_down.start(1.millis());
let mut status_led_count_down = timer.count_down();
status_led_count_down.start(250.millis());
// Create variable to track modes
let mut mode: u8 = 0;
// Create joystick button/axis array
let mut axis: [GimbalAxis; NBR_OF_GIMBAL_AXIS] = [Default::default(); NBR_OF_GIMBAL_AXIS];
let mut buttons: [Button; NUMBER_OF_BUTTONS] = [Button::default(); NUMBER_OF_BUTTONS];
// Set up left gimbal Y axis as full range without return to center spring
axis[GIMBAL_AXIS_LEFT_Y].idle_value = AXIS_MIN;
axis[GIMBAL_AXIS_LEFT_Y].deadzone = (50, 0, 50);
axis[GIMBAL_AXIS_LEFT_Y].expo = 0.0;
// Manual calibation values
// TODO: add external EEPROM and make calibration routine
axis[GIMBAL_AXIS_LEFT_X].center = AXIS_CENTER;
axis[GIMBAL_AXIS_LEFT_X].max = AXIS_MAX - 450;
axis[GIMBAL_AXIS_LEFT_X].min = AXIS_MIN + 500;
axis[GIMBAL_AXIS_LEFT_Y].center = AXIS_CENTER + 105;
axis[GIMBAL_AXIS_LEFT_Y].max = AXIS_MAX - 250;
axis[GIMBAL_AXIS_LEFT_Y].min = AXIS_MIN + 500;
axis[GIMBAL_AXIS_RIGHT_X].center = AXIS_CENTER - 230;
axis[GIMBAL_AXIS_RIGHT_X].max = AXIS_MAX - 700;
axis[GIMBAL_AXIS_RIGHT_X].min = AXIS_MIN + 350;
axis[GIMBAL_AXIS_RIGHT_Y].center = AXIS_CENTER - 68;
axis[GIMBAL_AXIS_RIGHT_Y].max = AXIS_MAX - 700;
axis[GIMBAL_AXIS_RIGHT_Y].min = AXIS_MIN + 450;
// Create dynamic smoother array for gimbal axis
// TODO: Find a way to store dynamic smoother in the axis struct
let mut smoother: [DynamicSmootherEcoI32; NBR_OF_GIMBAL_AXIS] = [
DynamicSmootherEcoI32::new(BASE_FREQ, SAMPLE_FREQ, SENSITIVITY),
DynamicSmootherEcoI32::new(BASE_FREQ, SAMPLE_FREQ, SENSITIVITY),
DynamicSmootherEcoI32::new(BASE_FREQ, SAMPLE_FREQ, SENSITIVITY),
DynamicSmootherEcoI32::new(BASE_FREQ, SAMPLE_FREQ, SENSITIVITY),
];
// Scan matrix to get initial state
for _ in 0..10 {
button_matrix.scan_matrix(&mut delay);
}
// Fallback way to enter bootloader
if button_matrix.buttons_pressed()[0] {
status_led.update(StatusMode::Bootloader);
let gpio_activity_pin_mask: u32 = 0;
let disable_interface_mask: u32 = 0;
rp2040_hal::rom_data::reset_to_usb_boot(gpio_activity_pin_mask, disable_interface_mask);
}
loop {
if status_led_count_down.wait().is_ok() {
update_status_led(&mut status_led, &mode);
}
if usb_hid_report_count_down.wait().is_ok() {
let pressed_keys = button_matrix.buttons_pressed();
mode = get_mode(pressed_keys);
for (index, key) in pressed_keys.iter().enumerate() {
buttons[index].pressed = *key;
}
if button_matrix.buttons_pressed()[0]
&& button_matrix.buttons_pressed()[1]
&& button_matrix.buttons_pressed()[5]
&& button_matrix.buttons_pressed()[6]
&& button_matrix.buttons_pressed()[8]
&& button_matrix.buttons_pressed()[9]
{
status_led.update(StatusMode::Bootloader);
let gpio_activity_pin_mask: u32 = 0;
let disable_interface_mask: u32 = 0;
rp2040_hal::rom_data::reset_to_usb_boot(
gpio_activity_pin_mask,
disable_interface_mask,
);
}
match usb_hid_joystick.device().write_report(&get_joystick_report(
&mut buttons,
&mut axis,
&mode,
)) {
Err(UsbHidError::WouldBlock) => {}
Ok(_) => {}
Err(e) => {
status_led.update(StatusMode::Error);
core::panic!("Failed to write joystick report: {:?}", e)
}
};
}
if scan_count_down.wait().is_ok() {
button_matrix.scan_matrix(&mut delay);
// Have not figured out hov to store the adc pins in an array yet
// so we have to read them one by one
// TODO: Find a way to store adc pins in an array
smoother[GIMBAL_AXIS_LEFT_X].tick(adc.read(&mut adc_pin_left_x).unwrap());
smoother[GIMBAL_AXIS_LEFT_Y].tick(adc.read(&mut adc_pin_left_y).unwrap());
smoother[GIMBAL_AXIS_RIGHT_X].tick(adc.read(&mut adc_pin_right_x).unwrap());
smoother[GIMBAL_AXIS_RIGHT_Y].tick(adc.read(&mut adc_pin_right_y).unwrap());
for (index, item) in axis.iter_mut().enumerate() {
item.value = calculate_axis_value(
smoother[index].value() as u16,
item.min,
item.max,
item.center,
item.deadzone,
item.expo,
);
}
}
if usb_dev.poll(&mut [&mut usb_hid_joystick]) {}
}
}
/// Update status LED colour based on function layer and capslock
///
/// Normal = green (NORMAL)
/// Left Alt mode = blue (GUI LOCK)
/// Error = steady red (ERROR)
///
/// # Arguments
/// * `status_led` - Reference to status LED
/// * `caps_lock_active` - Is capslock active
fn update_status_led<P, SM, I>(status_led: &mut Ws2812StatusLed<P, SM, I>, fn_mode: &u8)
where
P: PIOExt + FunctionConfig,
I: PinId,
Function<P>: ValidPinMode<I>,
SM: StateMachineIndex,
{
if *fn_mode & 0x10 == 0x10 {
status_led.update(StatusMode::Activity);
} else {
status_led.update(StatusMode::Normal);
}
}
/// Get current Fn mode (0, 1, 2 or 3 and alt l/r mode)
/// layout::MAP contains the button types
///
/// # Arguments
///
/// * `pressed_keys` - Array of pressed keys
fn get_mode(pressed_keys: [bool; NUMBER_OF_BUTTONS]) -> u8 {
// Check how many Fn keys are pressed
let mut mode: u8 = 0;
let mut fn_l_active: bool = false;
let mut fn_r_active: bool = false;
let mut alt_l_active: bool = false;
let mut alt_r_active: bool = false;
for (index, key) in pressed_keys.iter().enumerate() {
if *key && layout::MAP[0][index] == layout::ButtonType::FnL {
fn_l_active = true;
}
if *key && layout::MAP[0][index] == layout::ButtonType::FnR {
fn_r_active = true;
}
if *key && layout::MAP[0][index] == layout::ButtonType::ModeL {
alt_l_active = true;
}
if *key && layout::MAP[0][index] == layout::ButtonType::ModeR {
alt_r_active = true;
}
}
if fn_l_active && fn_r_active {
mode = 3;
} else if fn_r_active {
mode = 2;
} else if fn_l_active {
mode = 1;
}
// Set bit 4 and 5 if alt l/r is active
if alt_l_active {
mode |= 0x10;
}
if alt_r_active {
mode |= 0x20;
}
mode
}
/// Generate keyboard report based on pressed keys and Fn mode (0, 1 or 2)
/// layout::MAP contains the keycodes for each key in each Fn mode
///
/// # Arguments
///
/// * `matrix_keys` - Array of pressed keys
/// * `axis` - Array of joystick axis values
/// * `fn_mode` - Fn mode (0, 1, 2 or 3)
/// * `alt_l_mode` - Is left alt mode active
/// * `alt_r_mode` - Is right alt mode active
fn get_joystick_report(
matrix_keys: &mut [Button; NUMBER_OF_BUTTONS],
axis: &mut [GimbalAxis; 4],
mode: &u8,
) -> JoystickReport {
let mut x: u16 = axis[GIMBAL_AXIS_RIGHT_X].value;
let mut y: u16 = axis[GIMBAL_AXIS_RIGHT_Y].value;
let z: u16 = axis[GIMBAL_AXIS_LEFT_X].value;
let mut rx: u16 = AXIS_CENTER;
let mut ry: u16 = AXIS_CENTER;
let mut rz: u16 = axis[GIMBAL_AXIS_LEFT_Y].value;
// Update Fn mode for all axis that are in idle position
// This is to avoid the Fn mode switching when moving the gimbal
for item in axis.iter_mut() {
if item.value == item.idle_value {
item.fn_mode = mode & 0x0F;
}
}
// Left Alt mode active (bit 4)
// Full range of left gimbal gives half range of joystick axis (center to max)
// Left Fn mode = reversed range (center to min)
if mode & 0x10 == 0x10
&& (axis[GIMBAL_AXIS_LEFT_Y].fn_mode == 0 || axis[GIMBAL_AXIS_LEFT_Y].fn_mode == 2)
{
rz = remap(
axis[GIMBAL_AXIS_LEFT_Y].value,
AXIS_MIN,
AXIS_MAX,
AXIS_CENTER,
AXIS_MAX,
);
} else if mode & 0x10 == 0x10
&& (axis[GIMBAL_AXIS_LEFT_Y].fn_mode == 1 || axis[GIMBAL_AXIS_LEFT_Y].fn_mode == 3)
{
rz = AXIS_MAX
- remap(
axis[GIMBAL_AXIS_LEFT_Y].value,
AXIS_MIN,
AXIS_MAX,
AXIS_CENTER,
AXIS_MAX,
);
}
// Right Alt mode active (bit 5)
// Right gimbal control third joystick axis when right Fn mode is active
if mode & 0x20 == 0x20
&& (axis[GIMBAL_AXIS_RIGHT_X].fn_mode == 2 || axis[GIMBAL_AXIS_RIGHT_X].fn_mode == 3)
{
x = AXIS_CENTER;
rx = axis[GIMBAL_AXIS_RIGHT_X].value;
}
if mode & 0x20 == 0x20
&& (axis[GIMBAL_AXIS_RIGHT_Y].fn_mode == 2 || axis[GIMBAL_AXIS_RIGHT_Y].fn_mode == 3)
{
y = AXIS_CENTER;
ry = axis[GIMBAL_AXIS_RIGHT_Y].value;
}
// Set fn mode for all keys taht are in idle position
// This is to avoid the Fn mode switching when using a button
for key in matrix_keys.iter_mut() {
if !key.pressed {
key.fn_mode = mode & 0x0F;
}
}
// Generate array for all four hat switches with following structure:
// * bit 1: Up
// * bit 2: Right
// * bit 3: Down
// * bit 4: Left
// * bit 5: Button
// * value 0 = not pressed
// * value 1 = pressed
let mut hats: [u8; 4] = [0; 4];
for (index, key) in matrix_keys.iter_mut().enumerate() {
if key.pressed
&& layout::MAP[key.fn_mode as usize][index] as usize
>= layout::ButtonType::Hat1U as usize
&& layout::MAP[key.fn_mode as usize][index] as usize
<= layout::ButtonType::Hat4B as usize
{
hats[(layout::MAP[key.fn_mode as usize][index] as usize
- layout::ButtonType::Hat1U as usize)
/ 5] |= 1
<< ((layout::MAP[key.fn_mode as usize][index] as usize
- layout::ButtonType::Hat1U as usize)
- (5 * ((layout::MAP[key.fn_mode as usize][index] as usize
- layout::ButtonType::Hat1U as usize)
/ 5)));
}
}
// Convert hat switch data to HID code
let (hat1, hat_button1) = format_hat_value(hats[0]);
let (hat2, hat_button2) = format_hat_value(hats[1]);
let (hat3, hat_button3) = format_hat_value(hats[2]);
let (hat4, hat_button4) = format_hat_value(hats[3]);
// Update button state for joystick button 21-24 according to hat button 1-4
let mut buttons: u32 = (hat_button1 as u32) << 20
| ((hat_button2 as u32) << 21)
| ((hat_button3 as u32) << 22)
| ((hat_button4 as u32) << 23);
// Update button state for joystick button 1-20
for (index, key) in matrix_keys.iter_mut().enumerate() {
if key.pressed
&& layout::MAP[key.fn_mode as usize][index] as usize >= layout::ButtonType::B1 as usize
&& layout::MAP[key.fn_mode as usize][index] as usize <= layout::ButtonType::B20 as usize
{
buttons |= 1 << layout::MAP[key.fn_mode as usize][index] as usize;
}
}
JoystickReport {
x,
y,
z,
rx,
ry,
rz,
hat1,
hat2,
hat3,
hat4,
buttons,
}
}
/// Format hat value from 5 switches to USB HID coded value and button state
///
/// # Arguments
/// * `input` - Hat value coded as
/// bit 1-4: direction (U R D L)
/// bit 5: button state
/// 0 = not pressed
/// 1 = pressed
fn format_hat_value(input: u8) -> (u8, u8) {
const HAT_CENTER: u8 = 0xf;
const HAT_UP: u8 = 0;
const HAT_UP_RIGHT: u8 = 1;
const HAT_RIGHT: u8 = 2;
const HAT_DOWN_RIGHT: u8 = 3;
const HAT_DOWN: u8 = 4;
const HAT_DOWN_LEFT: u8 = 5;
const HAT_LEFT: u8 = 6;
const HAT_UP_LEFT: u8 = 7;
let direction: u8 = match input & 0x0F {
1 => HAT_UP,
2 => HAT_RIGHT,
3 => HAT_UP_RIGHT,
4 => HAT_DOWN,
6 => HAT_DOWN_RIGHT,
8 => HAT_LEFT,
12 => HAT_DOWN_LEFT,
9 => HAT_UP_LEFT,
_ => HAT_CENTER,
};
// Alpine hat switch button filter
let mut button_state: u8 = 0;
if input & 0x10 == 0x10 && direction == HAT_CENTER {
button_state = 1;
}
(direction, button_state)
}
/// Calculate value for joystick axis
///
/// # Arguments
/// * `value` - Value to calibrate
/// * `min` - Lower bound of the value's current range
/// * `max` - Upper bound of the value's current range
/// * `center` - Center of the value's current range
/// * `deadzone` - Deadzone of the value's current range (min, center, max)
/// * `expo` - Exponential curve factor
fn calculate_axis_value(
value: u16,
min: u16,
max: u16,
center: u16,
deadzone: (u16, u16, u16),
expo: f32,
) -> u16 {
let mut calibrated_value = AXIS_CENTER;
if value > (center + deadzone.1) {
calibrated_value = remap(
value,
center + deadzone.1,
max - deadzone.2,
AXIS_CENTER,
AXIS_MAX,
);
} else if value < (center - deadzone.1) {
calibrated_value = remap(
value,
min + deadzone.0,
center - deadzone.1,
AXIS_MIN,
AXIS_CENTER,
);
}
if expo != 0.0 {
let joystick_x_float = calibrated_value as f32 / AXIS_MAX as f32;
// Calculate expo using 9th order polynomial function with 0.5 as center point
let joystick_x_exp: f32 = expo * (0.5 + 256.0 * powf(joystick_x_float - 0.5, 9.0))
+ (1.0 - expo) * joystick_x_float;
calibrated_value = constrain(
(joystick_x_exp * AXIS_MAX as f32) as u16,
AXIS_MIN,
AXIS_MAX,
);
}
calibrated_value
}
/// Remapping values from one range to another
///
/// # Arguments
/// * `value` - Value to remap
/// * `in_min` - Lower bound of the value's current range
/// * `in_max` - Upper bound of the value's current range
/// * `out_min` - Lower bound of the value's target range
/// * `out_max` - Upper bound of the value's target range
fn remap(value: u16, in_min: u16, in_max: u16, out_min: u16, out_max: u16) -> u16 {
constrain(
(value as i64 - in_min as i64) * (out_max as i64 - out_min as i64)
/ (in_max as i64 - in_min as i64)
+ out_min as i64,
out_min as i64,
out_max as i64,
) as u16
}
/// Constrain a value to a given range
///
/// # Arguments
/// * `value` - Value to constrain
/// * `out_min` - Lower bound of the value's target range
/// * `out_max` - Upper bound of the value's target range
fn constrain<T: PartialOrd>(value: T, out_min: T, out_max: T) -> T {
if value < out_min {
out_min
} else if value > out_max {
out_max
} else {
value
}
}