Added dotstar library. First attempt on functional code
This commit is contained in:
parent
c367ed33d5
commit
02054cbe06
46
firmware/lib/Adafruit_BusIO/.github/ISSUE_TEMPLATE.md
vendored
Normal file
46
firmware/lib/Adafruit_BusIO/.github/ISSUE_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
Thank you for opening an issue on an Adafruit Arduino library repository. To
|
||||
improve the speed of resolution please review the following guidelines and
|
||||
common troubleshooting steps below before creating the issue:
|
||||
|
||||
- **Do not use GitHub issues for troubleshooting projects and issues.** Instead use
|
||||
the forums at http://forums.adafruit.com to ask questions and troubleshoot why
|
||||
something isn't working as expected. In many cases the problem is a common issue
|
||||
that you will more quickly receive help from the forum community. GitHub issues
|
||||
are meant for known defects in the code. If you don't know if there is a defect
|
||||
in the code then start with troubleshooting on the forum first.
|
||||
|
||||
- **If following a tutorial or guide be sure you didn't miss a step.** Carefully
|
||||
check all of the steps and commands to run have been followed. Consult the
|
||||
forum if you're unsure or have questions about steps in a guide/tutorial.
|
||||
|
||||
- **For Arduino projects check these very common issues to ensure they don't apply**:
|
||||
|
||||
- For uploading sketches or communicating with the board make sure you're using
|
||||
a **USB data cable** and **not** a **USB charge-only cable**. It is sometimes
|
||||
very hard to tell the difference between a data and charge cable! Try using the
|
||||
cable with other devices or swapping to another cable to confirm it is not
|
||||
the problem.
|
||||
|
||||
- **Be sure you are supplying adequate power to the board.** Check the specs of
|
||||
your board and plug in an external power supply. In many cases just
|
||||
plugging a board into your computer is not enough to power it and other
|
||||
peripherals.
|
||||
|
||||
- **Double check all soldering joints and connections.** Flakey connections
|
||||
cause many mysterious problems. See the [guide to excellent soldering](https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools) for examples of good solder joints.
|
||||
|
||||
- **Ensure you are using an official Arduino or Adafruit board.** We can't
|
||||
guarantee a clone board will have the same functionality and work as expected
|
||||
with this code and don't support them.
|
||||
|
||||
If you're sure this issue is a defect in the code and checked the steps above
|
||||
please fill in the following fields to provide enough troubleshooting information.
|
||||
You may delete the guideline and text above to just leave the following details:
|
||||
|
||||
- Arduino board: **INSERT ARDUINO BOARD NAME/TYPE HERE**
|
||||
|
||||
- Arduino IDE version (found in Arduino -> About Arduino menu): **INSERT ARDUINO
|
||||
VERSION HERE**
|
||||
|
||||
- List the steps to reproduce the problem below (if possible attach a sketch or
|
||||
copy the sketch code in too): **LIST REPRO STEPS BELOW**
|
||||
26
firmware/lib/Adafruit_BusIO/.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
26
firmware/lib/Adafruit_BusIO/.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
Thank you for creating a pull request to contribute to Adafruit's GitHub code!
|
||||
Before you open the request please review the following guidelines and tips to
|
||||
help it be more easily integrated:
|
||||
|
||||
- **Describe the scope of your change--i.e. what the change does and what parts
|
||||
of the code were modified.** This will help us understand any risks of integrating
|
||||
the code.
|
||||
|
||||
- **Describe any known limitations with your change.** For example if the change
|
||||
doesn't apply to a supported platform of the library please mention it.
|
||||
|
||||
- **Please run any tests or examples that can exercise your modified code.** We
|
||||
strive to not break users of the code and running tests/examples helps with this
|
||||
process.
|
||||
|
||||
Thank you again for contributing! We will try to test and integrate the change
|
||||
as soon as we can, but be aware we have many GitHub repositories to manage and
|
||||
can't immediately respond to every request. There is no need to bump or check in
|
||||
on a pull request (it will clutter the discussion of the request).
|
||||
|
||||
Also don't be worried if the request is closed or not integrated--sometimes the
|
||||
priorities of Adafruit's GitHub code (education, ease of use) might not match the
|
||||
priorities of the pull request. Don't fret, the open source community thrives on
|
||||
forks and GitHub makes it easy to keep your changes in a forked repo.
|
||||
|
||||
After reviewing the guidelines above you can delete this text from the pull request.
|
||||
33
firmware/lib/Adafruit_BusIO/.github/workflows/githubci.yml
vendored
Normal file
33
firmware/lib/Adafruit_BusIO/.github/workflows/githubci.yml
vendored
Normal file
@ -0,0 +1,33 @@
|
||||
name: Arduino Library CI
|
||||
|
||||
on: [pull_request, push, repository_dispatch]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: '3.x'
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: adafruit/ci-arduino
|
||||
path: ci
|
||||
|
||||
- name: Install the prerequisites
|
||||
run: bash ci/actions_install.sh
|
||||
|
||||
- name: Check for correct code formatting with clang-format
|
||||
run: python3 ci/run-clang-format.py -e "ci/*" -e "bin/*" -r .
|
||||
|
||||
- name: Check for correct documentation with doxygen
|
||||
env:
|
||||
GH_REPO_TOKEN: ${{ secrets.GH_REPO_TOKEN }}
|
||||
PRETTYNAME : "Adafruit Bus IO Library"
|
||||
run: bash ci/doxy_gen_and_deploy.sh
|
||||
|
||||
- name: Test the code on supported platforms
|
||||
run: python3 ci/build_platform.py main_platforms zero feather32u4
|
||||
|
||||
365
firmware/lib/Adafruit_BusIO/Adafruit_BusIO_Register.cpp
Normal file
365
firmware/lib/Adafruit_BusIO/Adafruit_BusIO_Register.cpp
Normal file
@ -0,0 +1,365 @@
|
||||
#include <Adafruit_BusIO_Register.h>
|
||||
|
||||
#if !defined(SPI_INTERFACES_COUNT) || \
|
||||
(defined(SPI_INTERFACES_COUNT) && (SPI_INTERFACES_COUNT > 0))
|
||||
|
||||
/*!
|
||||
* @brief Create a register we access over an I2C Device (which defines the
|
||||
* bus and address)
|
||||
* @param i2cdevice The I2CDevice to use for underlying I2C access
|
||||
* @param reg_addr The address pointer value for the I2C/SMBus register, can
|
||||
* be 8 or 16 bits
|
||||
* @param width The width of the register data itself, defaults to 1 byte
|
||||
* @param byteorder The byte order of the register (used when width is > 1),
|
||||
* defaults to LSBFIRST
|
||||
* @param address_width The width of the register address itself, defaults
|
||||
* to 1 byte
|
||||
*/
|
||||
Adafruit_BusIO_Register::Adafruit_BusIO_Register(Adafruit_I2CDevice *i2cdevice,
|
||||
uint16_t reg_addr,
|
||||
uint8_t width,
|
||||
uint8_t byteorder,
|
||||
uint8_t address_width) {
|
||||
_i2cdevice = i2cdevice;
|
||||
_spidevice = nullptr;
|
||||
_addrwidth = address_width;
|
||||
_address = reg_addr;
|
||||
_byteorder = byteorder;
|
||||
_width = width;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Create a register we access over an SPI Device (which defines the
|
||||
* bus and CS pin)
|
||||
* @param spidevice The SPIDevice to use for underlying SPI access
|
||||
* @param reg_addr The address pointer value for the SPI register, can
|
||||
* be 8 or 16 bits
|
||||
* @param type The method we use to read/write data to SPI (which is not
|
||||
* as well defined as I2C)
|
||||
* @param width The width of the register data itself, defaults to 1 byte
|
||||
* @param byteorder The byte order of the register (used when width is > 1),
|
||||
* defaults to LSBFIRST
|
||||
* @param address_width The width of the register address itself, defaults
|
||||
* to 1 byte
|
||||
*/
|
||||
Adafruit_BusIO_Register::Adafruit_BusIO_Register(Adafruit_SPIDevice *spidevice,
|
||||
uint16_t reg_addr,
|
||||
Adafruit_BusIO_SPIRegType type,
|
||||
uint8_t width,
|
||||
uint8_t byteorder,
|
||||
uint8_t address_width) {
|
||||
_spidevice = spidevice;
|
||||
_spiregtype = type;
|
||||
_i2cdevice = nullptr;
|
||||
_addrwidth = address_width;
|
||||
_address = reg_addr;
|
||||
_byteorder = byteorder;
|
||||
_width = width;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Create a register we access over an I2C or SPI Device. This is a
|
||||
* handy function because we can pass in nullptr for the unused interface,
|
||||
* allowing libraries to mass-define all the registers
|
||||
* @param i2cdevice The I2CDevice to use for underlying I2C access, if
|
||||
* nullptr we use SPI
|
||||
* @param spidevice The SPIDevice to use for underlying SPI access, if
|
||||
* nullptr we use I2C
|
||||
* @param reg_addr The address pointer value for the I2C/SMBus/SPI register,
|
||||
* can be 8 or 16 bits
|
||||
* @param type The method we use to read/write data to SPI (which is not
|
||||
* as well defined as I2C)
|
||||
* @param width The width of the register data itself, defaults to 1 byte
|
||||
* @param byteorder The byte order of the register (used when width is > 1),
|
||||
* defaults to LSBFIRST
|
||||
* @param address_width The width of the register address itself, defaults
|
||||
* to 1 byte
|
||||
*/
|
||||
Adafruit_BusIO_Register::Adafruit_BusIO_Register(
|
||||
Adafruit_I2CDevice *i2cdevice, Adafruit_SPIDevice *spidevice,
|
||||
Adafruit_BusIO_SPIRegType type, uint16_t reg_addr, uint8_t width,
|
||||
uint8_t byteorder, uint8_t address_width) {
|
||||
_spidevice = spidevice;
|
||||
_i2cdevice = i2cdevice;
|
||||
_spiregtype = type;
|
||||
_addrwidth = address_width;
|
||||
_address = reg_addr;
|
||||
_byteorder = byteorder;
|
||||
_width = width;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write a buffer of data to the register location
|
||||
* @param buffer Pointer to data to write
|
||||
* @param len Number of bytes to write
|
||||
* @return True on successful write (only really useful for I2C as SPI is
|
||||
* uncheckable)
|
||||
*/
|
||||
bool Adafruit_BusIO_Register::write(uint8_t *buffer, uint8_t len) {
|
||||
|
||||
uint8_t addrbuffer[2] = {(uint8_t)(_address & 0xFF),
|
||||
(uint8_t)(_address >> 8)};
|
||||
|
||||
if (_i2cdevice) {
|
||||
return _i2cdevice->write(buffer, len, true, addrbuffer, _addrwidth);
|
||||
}
|
||||
if (_spidevice) {
|
||||
if (_spiregtype == ADDRESSED_OPCODE_BIT0_LOW_TO_WRITE) {
|
||||
// very special case!
|
||||
|
||||
// pass the special opcode address which we set as the high byte of the
|
||||
// regaddr
|
||||
addrbuffer[0] =
|
||||
(uint8_t)(_address >> 8) & ~0x01; // set bottom bit low to write
|
||||
// the 'actual' reg addr is the second byte then
|
||||
addrbuffer[1] = (uint8_t)(_address & 0xFF);
|
||||
// the address appears to be a byte longer
|
||||
return _spidevice->write(buffer, len, addrbuffer, _addrwidth + 1);
|
||||
}
|
||||
|
||||
if (_spiregtype == ADDRBIT8_HIGH_TOREAD) {
|
||||
addrbuffer[0] &= ~0x80;
|
||||
}
|
||||
if (_spiregtype == ADDRBIT8_HIGH_TOWRITE) {
|
||||
addrbuffer[0] |= 0x80;
|
||||
}
|
||||
if (_spiregtype == AD8_HIGH_TOREAD_AD7_HIGH_TOINC) {
|
||||
addrbuffer[0] &= ~0x80;
|
||||
addrbuffer[0] |= 0x40;
|
||||
}
|
||||
return _spidevice->write(buffer, len, addrbuffer, _addrwidth);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write up to 4 bytes of data to the register location
|
||||
* @param value Data to write
|
||||
* @param numbytes How many bytes from 'value' to write
|
||||
* @return True on successful write (only really useful for I2C as SPI is
|
||||
* uncheckable)
|
||||
*/
|
||||
bool Adafruit_BusIO_Register::write(uint32_t value, uint8_t numbytes) {
|
||||
if (numbytes == 0) {
|
||||
numbytes = _width;
|
||||
}
|
||||
if (numbytes > 4) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// store a copy
|
||||
_cached = value;
|
||||
|
||||
for (int i = 0; i < numbytes; i++) {
|
||||
if (_byteorder == LSBFIRST) {
|
||||
_buffer[i] = value & 0xFF;
|
||||
} else {
|
||||
_buffer[numbytes - i - 1] = value & 0xFF;
|
||||
}
|
||||
value >>= 8;
|
||||
}
|
||||
return write(_buffer, numbytes);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read data from the register location. This does not do any error
|
||||
* checking!
|
||||
* @return Returns 0xFFFFFFFF on failure, value otherwise
|
||||
*/
|
||||
uint32_t Adafruit_BusIO_Register::read(void) {
|
||||
if (!read(_buffer, _width)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
uint32_t value = 0;
|
||||
|
||||
for (int i = 0; i < _width; i++) {
|
||||
value <<= 8;
|
||||
if (_byteorder == LSBFIRST) {
|
||||
value |= _buffer[_width - i - 1];
|
||||
} else {
|
||||
value |= _buffer[i];
|
||||
}
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read cached data from last time we wrote to this register
|
||||
* @return Returns 0xFFFFFFFF on failure, value otherwise
|
||||
*/
|
||||
uint32_t Adafruit_BusIO_Register::readCached(void) { return _cached; }
|
||||
|
||||
/*!
|
||||
* @brief Read a buffer of data from the register location
|
||||
* @param buffer Pointer to data to read into
|
||||
* @param len Number of bytes to read
|
||||
* @return True on successful write (only really useful for I2C as SPI is
|
||||
* uncheckable)
|
||||
*/
|
||||
bool Adafruit_BusIO_Register::read(uint8_t *buffer, uint8_t len) {
|
||||
uint8_t addrbuffer[2] = {(uint8_t)(_address & 0xFF),
|
||||
(uint8_t)(_address >> 8)};
|
||||
|
||||
if (_i2cdevice) {
|
||||
return _i2cdevice->write_then_read(addrbuffer, _addrwidth, buffer, len);
|
||||
}
|
||||
if (_spidevice) {
|
||||
if (_spiregtype == ADDRESSED_OPCODE_BIT0_LOW_TO_WRITE) {
|
||||
// very special case!
|
||||
|
||||
// pass the special opcode address which we set as the high byte of the
|
||||
// regaddr
|
||||
addrbuffer[0] =
|
||||
(uint8_t)(_address >> 8) | 0x01; // set bottom bit high to read
|
||||
// the 'actual' reg addr is the second byte then
|
||||
addrbuffer[1] = (uint8_t)(_address & 0xFF);
|
||||
// the address appears to be a byte longer
|
||||
return _spidevice->write_then_read(addrbuffer, _addrwidth + 1, buffer,
|
||||
len);
|
||||
}
|
||||
if (_spiregtype == ADDRBIT8_HIGH_TOREAD) {
|
||||
addrbuffer[0] |= 0x80;
|
||||
}
|
||||
if (_spiregtype == ADDRBIT8_HIGH_TOWRITE) {
|
||||
addrbuffer[0] &= ~0x80;
|
||||
}
|
||||
if (_spiregtype == AD8_HIGH_TOREAD_AD7_HIGH_TOINC) {
|
||||
addrbuffer[0] |= 0x80 | 0x40;
|
||||
}
|
||||
return _spidevice->write_then_read(addrbuffer, _addrwidth, buffer, len);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read 2 bytes of data from the register location
|
||||
* @param value Pointer to uint16_t variable to read into
|
||||
* @return True on successful write (only really useful for I2C as SPI is
|
||||
* uncheckable)
|
||||
*/
|
||||
bool Adafruit_BusIO_Register::read(uint16_t *value) {
|
||||
if (!read(_buffer, 2)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (_byteorder == LSBFIRST) {
|
||||
*value = _buffer[1];
|
||||
*value <<= 8;
|
||||
*value |= _buffer[0];
|
||||
} else {
|
||||
*value = _buffer[0];
|
||||
*value <<= 8;
|
||||
*value |= _buffer[1];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read 1 byte of data from the register location
|
||||
* @param value Pointer to uint8_t variable to read into
|
||||
* @return True on successful write (only really useful for I2C as SPI is
|
||||
* uncheckable)
|
||||
*/
|
||||
bool Adafruit_BusIO_Register::read(uint8_t *value) {
|
||||
if (!read(_buffer, 1)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
*value = _buffer[0];
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Pretty printer for this register
|
||||
* @param s The Stream to print to, defaults to &Serial
|
||||
*/
|
||||
void Adafruit_BusIO_Register::print(Stream *s) {
|
||||
uint32_t val = read();
|
||||
s->print("0x");
|
||||
s->print(val, HEX);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Pretty printer for this register
|
||||
* @param s The Stream to print to, defaults to &Serial
|
||||
*/
|
||||
void Adafruit_BusIO_Register::println(Stream *s) {
|
||||
print(s);
|
||||
s->println();
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Create a slice of the register that we can address without
|
||||
* touching other bits
|
||||
* @param reg The Adafruit_BusIO_Register which defines the bus/register
|
||||
* @param bits The number of bits wide we are slicing
|
||||
* @param shift The number of bits that our bit-slice is shifted from LSB
|
||||
*/
|
||||
Adafruit_BusIO_RegisterBits::Adafruit_BusIO_RegisterBits(
|
||||
Adafruit_BusIO_Register *reg, uint8_t bits, uint8_t shift) {
|
||||
_register = reg;
|
||||
_bits = bits;
|
||||
_shift = shift;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read 4 bytes of data from the register
|
||||
* @return data The 4 bytes to read
|
||||
*/
|
||||
uint32_t Adafruit_BusIO_RegisterBits::read(void) {
|
||||
uint32_t val = _register->read();
|
||||
val >>= _shift;
|
||||
return val & ((1 << (_bits)) - 1);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write 4 bytes of data to the register
|
||||
* @param data The 4 bytes to write
|
||||
* @return True on successful write (only really useful for I2C as SPI is
|
||||
* uncheckable)
|
||||
*/
|
||||
bool Adafruit_BusIO_RegisterBits::write(uint32_t data) {
|
||||
uint32_t val = _register->read();
|
||||
|
||||
// mask off the data before writing
|
||||
uint32_t mask = (1 << (_bits)) - 1;
|
||||
data &= mask;
|
||||
|
||||
mask <<= _shift;
|
||||
val &= ~mask; // remove the current data at that spot
|
||||
val |= data << _shift; // and add in the new data
|
||||
|
||||
return _register->write(val, _register->width());
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief The width of the register data, helpful for doing calculations
|
||||
* @returns The data width used when initializing the register
|
||||
*/
|
||||
uint8_t Adafruit_BusIO_Register::width(void) { return _width; }
|
||||
|
||||
/*!
|
||||
* @brief Set the default width of data
|
||||
* @param width the default width of data read from register
|
||||
*/
|
||||
void Adafruit_BusIO_Register::setWidth(uint8_t width) { _width = width; }
|
||||
|
||||
/*!
|
||||
* @brief Set register address
|
||||
* @param address the address from register
|
||||
*/
|
||||
void Adafruit_BusIO_Register::setAddress(uint16_t address) {
|
||||
_address = address;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Set the width of register address
|
||||
* @param address_width the width for register address
|
||||
*/
|
||||
void Adafruit_BusIO_Register::setAddressWidth(uint16_t address_width) {
|
||||
_addrwidth = address_width;
|
||||
}
|
||||
|
||||
#endif // SPI exists
|
||||
105
firmware/lib/Adafruit_BusIO/Adafruit_BusIO_Register.h
Normal file
105
firmware/lib/Adafruit_BusIO/Adafruit_BusIO_Register.h
Normal file
@ -0,0 +1,105 @@
|
||||
#ifndef Adafruit_BusIO_Register_h
|
||||
#define Adafruit_BusIO_Register_h
|
||||
|
||||
#include <Arduino.h>
|
||||
|
||||
#if !defined(SPI_INTERFACES_COUNT) || \
|
||||
(defined(SPI_INTERFACES_COUNT) && (SPI_INTERFACES_COUNT > 0))
|
||||
|
||||
#include <Adafruit_I2CDevice.h>
|
||||
#include <Adafruit_SPIDevice.h>
|
||||
|
||||
typedef enum _Adafruit_BusIO_SPIRegType {
|
||||
ADDRBIT8_HIGH_TOREAD = 0,
|
||||
/*!<
|
||||
* ADDRBIT8_HIGH_TOREAD
|
||||
* When reading a register you must actually send the value 0x80 + register
|
||||
* address to the device. e.g. To read the register 0x0B the register value
|
||||
* 0x8B is sent and to write 0x0B is sent.
|
||||
*/
|
||||
AD8_HIGH_TOREAD_AD7_HIGH_TOINC = 1,
|
||||
|
||||
/*!<
|
||||
* ADDRBIT8_HIGH_TOWRITE
|
||||
* When writing to a register you must actually send the value 0x80 +
|
||||
* the register address to the device. e.g. To write to the register 0x19 the
|
||||
* register value 0x99 is sent and to read 0x19 is sent.
|
||||
*/
|
||||
ADDRBIT8_HIGH_TOWRITE = 2,
|
||||
|
||||
/*!<
|
||||
* ADDRESSED_OPCODE_LOWBIT_TO_WRITE
|
||||
* Used by the MCP23S series, we send 0x40 |'rd with the opcode
|
||||
* Then set the lowest bit to write
|
||||
*/
|
||||
ADDRESSED_OPCODE_BIT0_LOW_TO_WRITE = 3,
|
||||
|
||||
} Adafruit_BusIO_SPIRegType;
|
||||
|
||||
/*!
|
||||
* @brief The class which defines a device register (a location to read/write
|
||||
* data from)
|
||||
*/
|
||||
class Adafruit_BusIO_Register {
|
||||
public:
|
||||
Adafruit_BusIO_Register(Adafruit_I2CDevice *i2cdevice, uint16_t reg_addr,
|
||||
uint8_t width = 1, uint8_t byteorder = LSBFIRST,
|
||||
uint8_t address_width = 1);
|
||||
|
||||
Adafruit_BusIO_Register(Adafruit_SPIDevice *spidevice, uint16_t reg_addr,
|
||||
Adafruit_BusIO_SPIRegType type, uint8_t width = 1,
|
||||
uint8_t byteorder = LSBFIRST,
|
||||
uint8_t address_width = 1);
|
||||
|
||||
Adafruit_BusIO_Register(Adafruit_I2CDevice *i2cdevice,
|
||||
Adafruit_SPIDevice *spidevice,
|
||||
Adafruit_BusIO_SPIRegType type, uint16_t reg_addr,
|
||||
uint8_t width = 1, uint8_t byteorder = LSBFIRST,
|
||||
uint8_t address_width = 1);
|
||||
|
||||
bool read(uint8_t *buffer, uint8_t len);
|
||||
bool read(uint8_t *value);
|
||||
bool read(uint16_t *value);
|
||||
uint32_t read(void);
|
||||
uint32_t readCached(void);
|
||||
bool write(uint8_t *buffer, uint8_t len);
|
||||
bool write(uint32_t value, uint8_t numbytes = 0);
|
||||
|
||||
uint8_t width(void);
|
||||
|
||||
void setWidth(uint8_t width);
|
||||
void setAddress(uint16_t address);
|
||||
void setAddressWidth(uint16_t address_width);
|
||||
|
||||
void print(Stream *s = &Serial);
|
||||
void println(Stream *s = &Serial);
|
||||
|
||||
private:
|
||||
Adafruit_I2CDevice *_i2cdevice;
|
||||
Adafruit_SPIDevice *_spidevice;
|
||||
Adafruit_BusIO_SPIRegType _spiregtype;
|
||||
uint16_t _address;
|
||||
uint8_t _width, _addrwidth, _byteorder;
|
||||
uint8_t _buffer[4]; // we won't support anything larger than uint32 for
|
||||
// non-buffered read
|
||||
uint32_t _cached = 0;
|
||||
};
|
||||
|
||||
/*!
|
||||
* @brief The class which defines a slice of bits from within a device register
|
||||
* (a location to read/write data from)
|
||||
*/
|
||||
class Adafruit_BusIO_RegisterBits {
|
||||
public:
|
||||
Adafruit_BusIO_RegisterBits(Adafruit_BusIO_Register *reg, uint8_t bits,
|
||||
uint8_t shift);
|
||||
bool write(uint32_t value);
|
||||
uint32_t read(void);
|
||||
|
||||
private:
|
||||
Adafruit_BusIO_Register *_register;
|
||||
uint8_t _bits, _shift;
|
||||
};
|
||||
|
||||
#endif // SPI exists
|
||||
#endif // BusIO_Register_h
|
||||
313
firmware/lib/Adafruit_BusIO/Adafruit_I2CDevice.cpp
Normal file
313
firmware/lib/Adafruit_BusIO/Adafruit_I2CDevice.cpp
Normal file
@ -0,0 +1,313 @@
|
||||
#include "Adafruit_I2CDevice.h"
|
||||
|
||||
//#define DEBUG_SERIAL Serial
|
||||
|
||||
/*!
|
||||
* @brief Create an I2C device at a given address
|
||||
* @param addr The 7-bit I2C address for the device
|
||||
* @param theWire The I2C bus to use, defaults to &Wire
|
||||
*/
|
||||
Adafruit_I2CDevice::Adafruit_I2CDevice(uint8_t addr, TwoWire *theWire) {
|
||||
_addr = addr;
|
||||
_wire = theWire;
|
||||
_begun = false;
|
||||
#ifdef ARDUINO_ARCH_SAMD
|
||||
_maxBufferSize = 250; // as defined in Wire.h's RingBuffer
|
||||
#elif defined(ESP32)
|
||||
_maxBufferSize = I2C_BUFFER_LENGTH;
|
||||
#else
|
||||
_maxBufferSize = 32;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Initializes and does basic address detection
|
||||
* @param addr_detect Whether we should attempt to detect the I2C address
|
||||
* with a scan. 99% of sensors/devices don't mind but once in a while, they spaz
|
||||
* on a scan!
|
||||
* @return True if I2C initialized and a device with the addr found
|
||||
*/
|
||||
bool Adafruit_I2CDevice::begin(bool addr_detect) {
|
||||
_wire->begin();
|
||||
_begun = true;
|
||||
|
||||
if (addr_detect) {
|
||||
return detected();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief De-initialize device, turn off the Wire interface
|
||||
*/
|
||||
void Adafruit_I2CDevice::end(void) {
|
||||
// Not all port implement Wire::end(), such as
|
||||
// - ESP8266
|
||||
// - AVR core without WIRE_HAS_END
|
||||
// - ESP32: end() is implemented since 2.0.1 which is latest at the moment.
|
||||
// Temporarily disable for now to give time for user to update.
|
||||
#if !(defined(ESP8266) || \
|
||||
(defined(ARDUINO_ARCH_AVR) && !defined(WIRE_HAS_END)) || \
|
||||
defined(ARDUINO_ARCH_ESP32))
|
||||
_wire->end();
|
||||
_begun = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Scans I2C for the address - note will give a false-positive
|
||||
* if there's no pullups on I2C
|
||||
* @return True if I2C initialized and a device with the addr found
|
||||
*/
|
||||
bool Adafruit_I2CDevice::detected(void) {
|
||||
// Init I2C if not done yet
|
||||
if (!_begun && !begin()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// A basic scanner, see if it ACK's
|
||||
_wire->beginTransmission(_addr);
|
||||
if (_wire->endTransmission() == 0) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println(F("Detected"));
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println(F("Not detected"));
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write a buffer or two to the I2C device. Cannot be more than
|
||||
* maxBufferSize() bytes.
|
||||
* @param buffer Pointer to buffer of data to write. This is const to
|
||||
* ensure the content of this buffer doesn't change.
|
||||
* @param len Number of bytes from buffer to write
|
||||
* @param prefix_buffer Pointer to optional array of data to write before
|
||||
* buffer. Cannot be more than maxBufferSize() bytes. This is const to
|
||||
* ensure the content of this buffer doesn't change.
|
||||
* @param prefix_len Number of bytes from prefix buffer to write
|
||||
* @param stop Whether to send an I2C STOP signal on write
|
||||
* @return True if write was successful, otherwise false.
|
||||
*/
|
||||
bool Adafruit_I2CDevice::write(const uint8_t *buffer, size_t len, bool stop,
|
||||
const uint8_t *prefix_buffer,
|
||||
size_t prefix_len) {
|
||||
if ((len + prefix_len) > maxBufferSize()) {
|
||||
// currently not guaranteed to work if more than 32 bytes!
|
||||
// we will need to find out if some platforms have larger
|
||||
// I2C buffer sizes :/
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println(F("\tI2CDevice could not write such a large buffer"));
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
_wire->beginTransmission(_addr);
|
||||
|
||||
// Write the prefix data (usually an address)
|
||||
if ((prefix_len != 0) && (prefix_buffer != nullptr)) {
|
||||
if (_wire->write(prefix_buffer, prefix_len) != prefix_len) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println(F("\tI2CDevice failed to write"));
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Write the data itself
|
||||
if (_wire->write(buffer, len) != len) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println(F("\tI2CDevice failed to write"));
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
|
||||
DEBUG_SERIAL.print(F("\tI2CWRITE @ 0x"));
|
||||
DEBUG_SERIAL.print(_addr, HEX);
|
||||
DEBUG_SERIAL.print(F(" :: "));
|
||||
if ((prefix_len != 0) && (prefix_buffer != nullptr)) {
|
||||
for (uint16_t i = 0; i < prefix_len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(prefix_buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
}
|
||||
}
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
if (i % 32 == 31) {
|
||||
DEBUG_SERIAL.println();
|
||||
}
|
||||
}
|
||||
|
||||
if (stop) {
|
||||
DEBUG_SERIAL.print("\tSTOP");
|
||||
}
|
||||
#endif
|
||||
|
||||
if (_wire->endTransmission(stop) == 0) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println();
|
||||
// DEBUG_SERIAL.println("Sent!");
|
||||
#endif
|
||||
return true;
|
||||
} else {
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.println("\tFailed to send!");
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read from I2C into a buffer from the I2C device.
|
||||
* Cannot be more than maxBufferSize() bytes.
|
||||
* @param buffer Pointer to buffer of data to read into
|
||||
* @param len Number of bytes from buffer to read.
|
||||
* @param stop Whether to send an I2C STOP signal on read
|
||||
* @return True if read was successful, otherwise false.
|
||||
*/
|
||||
bool Adafruit_I2CDevice::read(uint8_t *buffer, size_t len, bool stop) {
|
||||
size_t pos = 0;
|
||||
while (pos < len) {
|
||||
size_t read_len =
|
||||
((len - pos) > maxBufferSize()) ? maxBufferSize() : (len - pos);
|
||||
bool read_stop = (pos < (len - read_len)) ? false : stop;
|
||||
if (!_read(buffer + pos, read_len, read_stop))
|
||||
return false;
|
||||
pos += read_len;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Adafruit_I2CDevice::_read(uint8_t *buffer, size_t len, bool stop) {
|
||||
#if defined(TinyWireM_h)
|
||||
size_t recv = _wire->requestFrom((uint8_t)_addr, (uint8_t)len);
|
||||
#elif defined(ARDUINO_ARCH_MEGAAVR)
|
||||
size_t recv = _wire->requestFrom(_addr, len, stop);
|
||||
#else
|
||||
size_t recv = _wire->requestFrom((uint8_t)_addr, (uint8_t)len, (uint8_t)stop);
|
||||
#endif
|
||||
|
||||
if (recv != len) {
|
||||
// Not enough data available to fulfill our obligation!
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.print(F("\tI2CDevice did not receive enough data: "));
|
||||
DEBUG_SERIAL.println(recv);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
buffer[i] = _wire->read();
|
||||
}
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.print(F("\tI2CREAD @ 0x"));
|
||||
DEBUG_SERIAL.print(_addr, HEX);
|
||||
DEBUG_SERIAL.print(F(" :: "));
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
if (len % 32 == 31) {
|
||||
DEBUG_SERIAL.println();
|
||||
}
|
||||
}
|
||||
DEBUG_SERIAL.println();
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write some data, then read some data from I2C into another buffer.
|
||||
* Cannot be more than maxBufferSize() bytes. The buffers can point to
|
||||
* same/overlapping locations.
|
||||
* @param write_buffer Pointer to buffer of data to write from
|
||||
* @param write_len Number of bytes from buffer to write.
|
||||
* @param read_buffer Pointer to buffer of data to read into.
|
||||
* @param read_len Number of bytes from buffer to read.
|
||||
* @param stop Whether to send an I2C STOP signal between the write and read
|
||||
* @return True if write & read was successful, otherwise false.
|
||||
*/
|
||||
bool Adafruit_I2CDevice::write_then_read(const uint8_t *write_buffer,
|
||||
size_t write_len, uint8_t *read_buffer,
|
||||
size_t read_len, bool stop) {
|
||||
if (!write(write_buffer, write_len, stop)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return read(read_buffer, read_len);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Returns the 7-bit address of this device
|
||||
* @return The 7-bit address of this device
|
||||
*/
|
||||
uint8_t Adafruit_I2CDevice::address(void) { return _addr; }
|
||||
|
||||
/*!
|
||||
* @brief Change the I2C clock speed to desired (relies on
|
||||
* underlying Wire support!
|
||||
* @param desiredclk The desired I2C SCL frequency
|
||||
* @return True if this platform supports changing I2C speed.
|
||||
* Not necessarily that the speed was achieved!
|
||||
*/
|
||||
bool Adafruit_I2CDevice::setSpeed(uint32_t desiredclk) {
|
||||
#if defined(__AVR_ATmega328__) || \
|
||||
defined(__AVR_ATmega328P__) // fix arduino core set clock
|
||||
// calculate TWBR correctly
|
||||
|
||||
if ((F_CPU / 18) < desiredclk) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
Serial.println(F("I2C.setSpeed too high."));
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
uint32_t atwbr = ((F_CPU / desiredclk) - 16) / 2;
|
||||
if (atwbr > 16320) {
|
||||
#ifdef DEBUG_SERIAL
|
||||
Serial.println(F("I2C.setSpeed too low."));
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
if (atwbr <= 255) {
|
||||
atwbr /= 1;
|
||||
TWSR = 0x0;
|
||||
} else if (atwbr <= 1020) {
|
||||
atwbr /= 4;
|
||||
TWSR = 0x1;
|
||||
} else if (atwbr <= 4080) {
|
||||
atwbr /= 16;
|
||||
TWSR = 0x2;
|
||||
} else { // if (atwbr <= 16320)
|
||||
atwbr /= 64;
|
||||
TWSR = 0x3;
|
||||
}
|
||||
TWBR = atwbr;
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
Serial.print(F("TWSR prescaler = "));
|
||||
Serial.println(pow(4, TWSR));
|
||||
Serial.print(F("TWBR = "));
|
||||
Serial.println(atwbr);
|
||||
#endif
|
||||
return true;
|
||||
#elif (ARDUINO >= 157) && !defined(ARDUINO_STM32_FEATHER) && \
|
||||
!defined(TinyWireM_h)
|
||||
_wire->setClock(desiredclk);
|
||||
return true;
|
||||
|
||||
#else
|
||||
(void)desiredclk;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
36
firmware/lib/Adafruit_BusIO/Adafruit_I2CDevice.h
Normal file
36
firmware/lib/Adafruit_BusIO/Adafruit_I2CDevice.h
Normal file
@ -0,0 +1,36 @@
|
||||
#ifndef Adafruit_I2CDevice_h
|
||||
#define Adafruit_I2CDevice_h
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <Wire.h>
|
||||
|
||||
///< The class which defines how we will talk to this device over I2C
|
||||
class Adafruit_I2CDevice {
|
||||
public:
|
||||
Adafruit_I2CDevice(uint8_t addr, TwoWire *theWire = &Wire);
|
||||
uint8_t address(void);
|
||||
bool begin(bool addr_detect = true);
|
||||
void end(void);
|
||||
bool detected(void);
|
||||
|
||||
bool read(uint8_t *buffer, size_t len, bool stop = true);
|
||||
bool write(const uint8_t *buffer, size_t len, bool stop = true,
|
||||
const uint8_t *prefix_buffer = nullptr, size_t prefix_len = 0);
|
||||
bool write_then_read(const uint8_t *write_buffer, size_t write_len,
|
||||
uint8_t *read_buffer, size_t read_len,
|
||||
bool stop = false);
|
||||
bool setSpeed(uint32_t desiredclk);
|
||||
|
||||
/*! @brief How many bytes we can read in a transaction
|
||||
* @return The size of the Wire receive/transmit buffer */
|
||||
size_t maxBufferSize() { return _maxBufferSize; }
|
||||
|
||||
private:
|
||||
uint8_t _addr;
|
||||
TwoWire *_wire;
|
||||
bool _begun;
|
||||
size_t _maxBufferSize;
|
||||
bool _read(uint8_t *buffer, size_t len, bool stop);
|
||||
};
|
||||
|
||||
#endif // Adafruit_I2CDevice_h
|
||||
10
firmware/lib/Adafruit_BusIO/Adafruit_I2CRegister.h
Normal file
10
firmware/lib/Adafruit_BusIO/Adafruit_I2CRegister.h
Normal file
@ -0,0 +1,10 @@
|
||||
#ifndef _ADAFRUIT_I2C_REGISTER_H_
|
||||
#define _ADAFRUIT_I2C_REGISTER_H_
|
||||
|
||||
#include <Adafruit_BusIO_Register.h>
|
||||
#include <Arduino.h>
|
||||
|
||||
typedef Adafruit_BusIO_Register Adafruit_I2CRegister;
|
||||
typedef Adafruit_BusIO_RegisterBits Adafruit_I2CRegisterBits;
|
||||
|
||||
#endif
|
||||
493
firmware/lib/Adafruit_BusIO/Adafruit_SPIDevice.cpp
Normal file
493
firmware/lib/Adafruit_BusIO/Adafruit_SPIDevice.cpp
Normal file
@ -0,0 +1,493 @@
|
||||
#include "Adafruit_SPIDevice.h"
|
||||
|
||||
#if !defined(SPI_INTERFACES_COUNT) || \
|
||||
(defined(SPI_INTERFACES_COUNT) && (SPI_INTERFACES_COUNT > 0))
|
||||
|
||||
//#define DEBUG_SERIAL Serial
|
||||
|
||||
/*!
|
||||
* @brief Create an SPI device with the given CS pin and settings
|
||||
* @param cspin The arduino pin number to use for chip select
|
||||
* @param freq The SPI clock frequency to use, defaults to 1MHz
|
||||
* @param dataOrder The SPI data order to use for bits within each byte,
|
||||
* defaults to SPI_BITORDER_MSBFIRST
|
||||
* @param dataMode The SPI mode to use, defaults to SPI_MODE0
|
||||
* @param theSPI The SPI bus to use, defaults to &theSPI
|
||||
*/
|
||||
Adafruit_SPIDevice::Adafruit_SPIDevice(int8_t cspin, uint32_t freq,
|
||||
BusIOBitOrder dataOrder,
|
||||
uint8_t dataMode, SPIClass *theSPI) {
|
||||
_cs = cspin;
|
||||
_sck = _mosi = _miso = -1;
|
||||
_spi = theSPI;
|
||||
_begun = false;
|
||||
_spiSetting = new SPISettings(freq, dataOrder, dataMode);
|
||||
_freq = freq;
|
||||
_dataOrder = dataOrder;
|
||||
_dataMode = dataMode;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Create an SPI device with the given CS pin and settings
|
||||
* @param cspin The arduino pin number to use for chip select
|
||||
* @param sckpin The arduino pin number to use for SCK
|
||||
* @param misopin The arduino pin number to use for MISO, set to -1 if not
|
||||
* used
|
||||
* @param mosipin The arduino pin number to use for MOSI, set to -1 if not
|
||||
* used
|
||||
* @param freq The SPI clock frequency to use, defaults to 1MHz
|
||||
* @param dataOrder The SPI data order to use for bits within each byte,
|
||||
* defaults to SPI_BITORDER_MSBFIRST
|
||||
* @param dataMode The SPI mode to use, defaults to SPI_MODE0
|
||||
*/
|
||||
Adafruit_SPIDevice::Adafruit_SPIDevice(int8_t cspin, int8_t sckpin,
|
||||
int8_t misopin, int8_t mosipin,
|
||||
uint32_t freq, BusIOBitOrder dataOrder,
|
||||
uint8_t dataMode) {
|
||||
_cs = cspin;
|
||||
_sck = sckpin;
|
||||
_miso = misopin;
|
||||
_mosi = mosipin;
|
||||
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
csPort = (BusIO_PortReg *)portOutputRegister(digitalPinToPort(cspin));
|
||||
csPinMask = digitalPinToBitMask(cspin);
|
||||
if (mosipin != -1) {
|
||||
mosiPort = (BusIO_PortReg *)portOutputRegister(digitalPinToPort(mosipin));
|
||||
mosiPinMask = digitalPinToBitMask(mosipin);
|
||||
}
|
||||
if (misopin != -1) {
|
||||
misoPort = (BusIO_PortReg *)portInputRegister(digitalPinToPort(misopin));
|
||||
misoPinMask = digitalPinToBitMask(misopin);
|
||||
}
|
||||
clkPort = (BusIO_PortReg *)portOutputRegister(digitalPinToPort(sckpin));
|
||||
clkPinMask = digitalPinToBitMask(sckpin);
|
||||
#endif
|
||||
|
||||
_freq = freq;
|
||||
_dataOrder = dataOrder;
|
||||
_dataMode = dataMode;
|
||||
_begun = false;
|
||||
_spiSetting = new SPISettings(freq, dataOrder, dataMode);
|
||||
_spi = nullptr;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Release memory allocated in constructors
|
||||
*/
|
||||
Adafruit_SPIDevice::~Adafruit_SPIDevice() { delete _spiSetting; }
|
||||
|
||||
/*!
|
||||
* @brief Initializes SPI bus and sets CS pin high
|
||||
* @return Always returns true because there's no way to test success of SPI
|
||||
* init
|
||||
*/
|
||||
bool Adafruit_SPIDevice::begin(void) {
|
||||
if (_cs != -1) {
|
||||
pinMode(_cs, OUTPUT);
|
||||
digitalWrite(_cs, HIGH);
|
||||
}
|
||||
|
||||
if (_spi) { // hardware SPI
|
||||
_spi->begin();
|
||||
} else {
|
||||
pinMode(_sck, OUTPUT);
|
||||
|
||||
if ((_dataMode == SPI_MODE0) || (_dataMode == SPI_MODE1)) {
|
||||
// idle low on mode 0 and 1
|
||||
digitalWrite(_sck, LOW);
|
||||
} else {
|
||||
// idle high on mode 2 or 3
|
||||
digitalWrite(_sck, HIGH);
|
||||
}
|
||||
if (_mosi != -1) {
|
||||
pinMode(_mosi, OUTPUT);
|
||||
digitalWrite(_mosi, HIGH);
|
||||
}
|
||||
if (_miso != -1) {
|
||||
pinMode(_miso, INPUT);
|
||||
}
|
||||
}
|
||||
|
||||
_begun = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Transfer (send/receive) a buffer over hard/soft SPI, without
|
||||
* transaction management
|
||||
* @param buffer The buffer to send and receive at the same time
|
||||
* @param len The number of bytes to transfer
|
||||
*/
|
||||
void Adafruit_SPIDevice::transfer(uint8_t *buffer, size_t len) {
|
||||
if (_spi) {
|
||||
// hardware SPI is easy
|
||||
|
||||
#if defined(SPARK)
|
||||
_spi->transfer(buffer, buffer, len, nullptr);
|
||||
#elif defined(STM32)
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
_spi->transfer(buffer[i]);
|
||||
}
|
||||
#else
|
||||
_spi->transfer(buffer, len);
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
uint8_t startbit;
|
||||
if (_dataOrder == SPI_BITORDER_LSBFIRST) {
|
||||
startbit = 0x1;
|
||||
} else {
|
||||
startbit = 0x80;
|
||||
}
|
||||
|
||||
bool towrite, lastmosi = !(buffer[0] & startbit);
|
||||
uint8_t bitdelay_us = (1000000 / _freq) / 2;
|
||||
|
||||
// for softSPI we'll do it by hand
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
// software SPI
|
||||
uint8_t reply = 0;
|
||||
uint8_t send = buffer[i];
|
||||
|
||||
/*
|
||||
Serial.print("\tSending software SPI byte 0x");
|
||||
Serial.print(send, HEX);
|
||||
Serial.print(" -> 0x");
|
||||
*/
|
||||
|
||||
// Serial.print(send, HEX);
|
||||
for (uint8_t b = startbit; b != 0;
|
||||
b = (_dataOrder == SPI_BITORDER_LSBFIRST) ? b << 1 : b >> 1) {
|
||||
|
||||
if (bitdelay_us) {
|
||||
delayMicroseconds(bitdelay_us);
|
||||
}
|
||||
|
||||
if (_dataMode == SPI_MODE0 || _dataMode == SPI_MODE2) {
|
||||
towrite = send & b;
|
||||
if ((_mosi != -1) && (lastmosi != towrite)) {
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
if (towrite)
|
||||
*mosiPort |= mosiPinMask;
|
||||
else
|
||||
*mosiPort &= ~mosiPinMask;
|
||||
#else
|
||||
digitalWrite(_mosi, towrite);
|
||||
#endif
|
||||
lastmosi = towrite;
|
||||
}
|
||||
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
*clkPort |= clkPinMask; // Clock high
|
||||
#else
|
||||
digitalWrite(_sck, HIGH);
|
||||
#endif
|
||||
|
||||
if (bitdelay_us) {
|
||||
delayMicroseconds(bitdelay_us);
|
||||
}
|
||||
|
||||
if (_miso != -1) {
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
if (*misoPort & misoPinMask) {
|
||||
#else
|
||||
if (digitalRead(_miso)) {
|
||||
#endif
|
||||
reply |= b;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
*clkPort &= ~clkPinMask; // Clock low
|
||||
#else
|
||||
digitalWrite(_sck, LOW);
|
||||
#endif
|
||||
} else { // if (_dataMode == SPI_MODE1 || _dataMode == SPI_MODE3)
|
||||
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
*clkPort |= clkPinMask; // Clock high
|
||||
#else
|
||||
digitalWrite(_sck, HIGH);
|
||||
#endif
|
||||
|
||||
if (bitdelay_us) {
|
||||
delayMicroseconds(bitdelay_us);
|
||||
}
|
||||
|
||||
if (_mosi != -1) {
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
if (send & b)
|
||||
*mosiPort |= mosiPinMask;
|
||||
else
|
||||
*mosiPort &= ~mosiPinMask;
|
||||
#else
|
||||
digitalWrite(_mosi, send & b);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
*clkPort &= ~clkPinMask; // Clock low
|
||||
#else
|
||||
digitalWrite(_sck, LOW);
|
||||
#endif
|
||||
|
||||
if (_miso != -1) {
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
if (*misoPort & misoPinMask) {
|
||||
#else
|
||||
if (digitalRead(_miso)) {
|
||||
#endif
|
||||
reply |= b;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (_miso != -1) {
|
||||
buffer[i] = reply;
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Transfer (send/receive) one byte over hard/soft SPI, without
|
||||
* transaction management
|
||||
* @param send The byte to send
|
||||
* @return The byte received while transmitting
|
||||
*/
|
||||
uint8_t Adafruit_SPIDevice::transfer(uint8_t send) {
|
||||
uint8_t data = send;
|
||||
transfer(&data, 1);
|
||||
return data;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Manually begin a transaction (calls beginTransaction if hardware
|
||||
* SPI)
|
||||
*/
|
||||
void Adafruit_SPIDevice::beginTransaction(void) {
|
||||
if (_spi) {
|
||||
_spi->beginTransaction(*_spiSetting);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Manually end a transaction (calls endTransaction if hardware SPI)
|
||||
*/
|
||||
void Adafruit_SPIDevice::endTransaction(void) {
|
||||
if (_spi) {
|
||||
_spi->endTransaction();
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Assert/Deassert the CS pin if it is defined
|
||||
* @param value The state the CS is set to
|
||||
*/
|
||||
void Adafruit_SPIDevice::setChipSelect(int value) {
|
||||
if (_cs != -1) {
|
||||
digitalWrite(_cs, value);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write a buffer or two to the SPI device, with transaction
|
||||
* management.
|
||||
* @brief Manually begin a transaction (calls beginTransaction if hardware
|
||||
* SPI) with asserting the CS pin
|
||||
*/
|
||||
void Adafruit_SPIDevice::beginTransactionWithAssertingCS() {
|
||||
beginTransaction();
|
||||
setChipSelect(LOW);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Manually end a transaction (calls endTransaction if hardware SPI)
|
||||
* with deasserting the CS pin
|
||||
*/
|
||||
void Adafruit_SPIDevice::endTransactionWithDeassertingCS() {
|
||||
setChipSelect(HIGH);
|
||||
endTransaction();
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write a buffer or two to the SPI device, with transaction
|
||||
* management.
|
||||
* @param buffer Pointer to buffer of data to write
|
||||
* @param len Number of bytes from buffer to write
|
||||
* @param prefix_buffer Pointer to optional array of data to write before
|
||||
* buffer.
|
||||
* @param prefix_len Number of bytes from prefix buffer to write
|
||||
* @return Always returns true because there's no way to test success of SPI
|
||||
* writes
|
||||
*/
|
||||
bool Adafruit_SPIDevice::write(const uint8_t *buffer, size_t len,
|
||||
const uint8_t *prefix_buffer,
|
||||
size_t prefix_len) {
|
||||
beginTransactionWithAssertingCS();
|
||||
|
||||
// do the writing
|
||||
#if defined(ARDUINO_ARCH_ESP32)
|
||||
if (_spi) {
|
||||
if (prefix_len > 0) {
|
||||
_spi->transferBytes(prefix_buffer, nullptr, prefix_len);
|
||||
}
|
||||
if (len > 0) {
|
||||
_spi->transferBytes(buffer, nullptr, len);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
for (size_t i = 0; i < prefix_len; i++) {
|
||||
transfer(prefix_buffer[i]);
|
||||
}
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
transfer(buffer[i]);
|
||||
}
|
||||
}
|
||||
endTransactionWithDeassertingCS();
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.print(F("\tSPIDevice Wrote: "));
|
||||
if ((prefix_len != 0) && (prefix_buffer != nullptr)) {
|
||||
for (uint16_t i = 0; i < prefix_len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(prefix_buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
}
|
||||
}
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
if (i % 32 == 31) {
|
||||
DEBUG_SERIAL.println();
|
||||
}
|
||||
}
|
||||
DEBUG_SERIAL.println();
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Read from SPI into a buffer from the SPI device, with transaction
|
||||
* management.
|
||||
* @param buffer Pointer to buffer of data to read into
|
||||
* @param len Number of bytes from buffer to read.
|
||||
* @param sendvalue The 8-bits of data to write when doing the data read,
|
||||
* defaults to 0xFF
|
||||
* @return Always returns true because there's no way to test success of SPI
|
||||
* writes
|
||||
*/
|
||||
bool Adafruit_SPIDevice::read(uint8_t *buffer, size_t len, uint8_t sendvalue) {
|
||||
memset(buffer, sendvalue, len); // clear out existing buffer
|
||||
|
||||
beginTransactionWithAssertingCS();
|
||||
transfer(buffer, len);
|
||||
endTransactionWithDeassertingCS();
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.print(F("\tSPIDevice Read: "));
|
||||
for (uint16_t i = 0; i < len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
if (len % 32 == 31) {
|
||||
DEBUG_SERIAL.println();
|
||||
}
|
||||
}
|
||||
DEBUG_SERIAL.println();
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write some data, then read some data from SPI into another buffer,
|
||||
* with transaction management. The buffers can point to same/overlapping
|
||||
* locations. This does not transmit-receive at the same time!
|
||||
* @param write_buffer Pointer to buffer of data to write from
|
||||
* @param write_len Number of bytes from buffer to write.
|
||||
* @param read_buffer Pointer to buffer of data to read into.
|
||||
* @param read_len Number of bytes from buffer to read.
|
||||
* @param sendvalue The 8-bits of data to write when doing the data read,
|
||||
* defaults to 0xFF
|
||||
* @return Always returns true because there's no way to test success of SPI
|
||||
* writes
|
||||
*/
|
||||
bool Adafruit_SPIDevice::write_then_read(const uint8_t *write_buffer,
|
||||
size_t write_len, uint8_t *read_buffer,
|
||||
size_t read_len, uint8_t sendvalue) {
|
||||
beginTransactionWithAssertingCS();
|
||||
// do the writing
|
||||
#if defined(ARDUINO_ARCH_ESP32)
|
||||
if (_spi) {
|
||||
if (write_len > 0) {
|
||||
_spi->transferBytes(write_buffer, nullptr, write_len);
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
for (size_t i = 0; i < write_len; i++) {
|
||||
transfer(write_buffer[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.print(F("\tSPIDevice Wrote: "));
|
||||
for (uint16_t i = 0; i < write_len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(write_buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
if (write_len % 32 == 31) {
|
||||
DEBUG_SERIAL.println();
|
||||
}
|
||||
}
|
||||
DEBUG_SERIAL.println();
|
||||
#endif
|
||||
|
||||
// do the reading
|
||||
for (size_t i = 0; i < read_len; i++) {
|
||||
read_buffer[i] = transfer(sendvalue);
|
||||
}
|
||||
|
||||
#ifdef DEBUG_SERIAL
|
||||
DEBUG_SERIAL.print(F("\tSPIDevice Read: "));
|
||||
for (uint16_t i = 0; i < read_len; i++) {
|
||||
DEBUG_SERIAL.print(F("0x"));
|
||||
DEBUG_SERIAL.print(read_buffer[i], HEX);
|
||||
DEBUG_SERIAL.print(F(", "));
|
||||
if (read_len % 32 == 31) {
|
||||
DEBUG_SERIAL.println();
|
||||
}
|
||||
}
|
||||
DEBUG_SERIAL.println();
|
||||
#endif
|
||||
|
||||
endTransactionWithDeassertingCS();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Write some data and read some data at the same time from SPI
|
||||
* into the same buffer, with transaction management. This is basicaly a wrapper
|
||||
* for transfer() with CS-pin and transaction management. This /does/
|
||||
* transmit-receive at the same time!
|
||||
* @param buffer Pointer to buffer of data to write/read to/from
|
||||
* @param len Number of bytes from buffer to write/read.
|
||||
* @return Always returns true because there's no way to test success of SPI
|
||||
* writes
|
||||
*/
|
||||
bool Adafruit_SPIDevice::write_and_read(uint8_t *buffer, size_t len) {
|
||||
beginTransactionWithAssertingCS();
|
||||
transfer(buffer, len);
|
||||
endTransactionWithDeassertingCS();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // SPI exists
|
||||
123
firmware/lib/Adafruit_BusIO/Adafruit_SPIDevice.h
Normal file
123
firmware/lib/Adafruit_BusIO/Adafruit_SPIDevice.h
Normal file
@ -0,0 +1,123 @@
|
||||
#ifndef Adafruit_SPIDevice_h
|
||||
#define Adafruit_SPIDevice_h
|
||||
|
||||
#include <Arduino.h>
|
||||
|
||||
#if !defined(SPI_INTERFACES_COUNT) || \
|
||||
(defined(SPI_INTERFACES_COUNT) && (SPI_INTERFACES_COUNT > 0))
|
||||
|
||||
#include <SPI.h>
|
||||
|
||||
// some modern SPI definitions don't have BitOrder enum
|
||||
#if (defined(__AVR__) && !defined(ARDUINO_ARCH_MEGAAVR)) || \
|
||||
defined(ESP8266) || defined(TEENSYDUINO) || defined(SPARK) || \
|
||||
defined(ARDUINO_ARCH_SPRESENSE) || defined(MEGATINYCORE) || \
|
||||
defined(DXCORE) || defined(ARDUINO_AVR_ATmega4809) || \
|
||||
defined(ARDUINO_AVR_ATmega4808) || defined(ARDUINO_AVR_ATmega3209) || \
|
||||
defined(ARDUINO_AVR_ATmega3208) || defined(ARDUINO_AVR_ATmega1609) || \
|
||||
defined(ARDUINO_AVR_ATmega1608) || defined(ARDUINO_AVR_ATmega809) || \
|
||||
defined(ARDUINO_AVR_ATmega808) || defined(ARDUINO_ARCH_ARC32)
|
||||
|
||||
typedef enum _BitOrder {
|
||||
SPI_BITORDER_MSBFIRST = MSBFIRST,
|
||||
SPI_BITORDER_LSBFIRST = LSBFIRST,
|
||||
} BusIOBitOrder;
|
||||
|
||||
#elif defined(ESP32) || defined(__ASR6501__) || defined(__ASR6502__)
|
||||
|
||||
// some modern SPI definitions don't have BitOrder enum and have different SPI
|
||||
// mode defines
|
||||
typedef enum _BitOrder {
|
||||
SPI_BITORDER_MSBFIRST = SPI_MSBFIRST,
|
||||
SPI_BITORDER_LSBFIRST = SPI_LSBFIRST,
|
||||
} BusIOBitOrder;
|
||||
|
||||
#else
|
||||
// Some platforms have a BitOrder enum but its named MSBFIRST/LSBFIRST
|
||||
#define SPI_BITORDER_MSBFIRST MSBFIRST
|
||||
#define SPI_BITORDER_LSBFIRST LSBFIRST
|
||||
typedef BitOrder BusIOBitOrder;
|
||||
#endif
|
||||
|
||||
#if defined(__IMXRT1062__) // Teensy 4.x
|
||||
// *Warning* I disabled the usage of FAST_PINIO as the set/clear operations
|
||||
// used in the cpp file are not atomic and can effect multiple IO pins
|
||||
// and if an interrupt happens in between the time the code reads the register
|
||||
// and writes out the updated value, that changes one or more other IO pins
|
||||
// on that same IO port, those change will be clobbered when the updated
|
||||
// values are written back. A fast version can be implemented that uses the
|
||||
// ports set and clear registers which are atomic.
|
||||
// typedef volatile uint32_t BusIO_PortReg;
|
||||
// typedef uint32_t BusIO_PortMask;
|
||||
//#define BUSIO_USE_FAST_PINIO
|
||||
|
||||
#elif defined(__AVR__) || defined(TEENSYDUINO)
|
||||
typedef volatile uint8_t BusIO_PortReg;
|
||||
typedef uint8_t BusIO_PortMask;
|
||||
#define BUSIO_USE_FAST_PINIO
|
||||
|
||||
#elif defined(ESP8266) || defined(ESP32) || defined(__SAM3X8E__) || \
|
||||
defined(ARDUINO_ARCH_SAMD)
|
||||
typedef volatile uint32_t BusIO_PortReg;
|
||||
typedef uint32_t BusIO_PortMask;
|
||||
#define BUSIO_USE_FAST_PINIO
|
||||
|
||||
#elif (defined(__arm__) || defined(ARDUINO_FEATHER52)) && \
|
||||
!defined(ARDUINO_ARCH_MBED) && !defined(ARDUINO_ARCH_RP2040)
|
||||
typedef volatile uint32_t BusIO_PortReg;
|
||||
typedef uint32_t BusIO_PortMask;
|
||||
#if !defined(__ASR6501__) && !defined(__ASR6502__)
|
||||
#define BUSIO_USE_FAST_PINIO
|
||||
#endif
|
||||
|
||||
#else
|
||||
#undef BUSIO_USE_FAST_PINIO
|
||||
#endif
|
||||
|
||||
/**! The class which defines how we will talk to this device over SPI **/
|
||||
class Adafruit_SPIDevice {
|
||||
public:
|
||||
Adafruit_SPIDevice(int8_t cspin, uint32_t freq = 1000000,
|
||||
BusIOBitOrder dataOrder = SPI_BITORDER_MSBFIRST,
|
||||
uint8_t dataMode = SPI_MODE0, SPIClass *theSPI = &SPI);
|
||||
|
||||
Adafruit_SPIDevice(int8_t cspin, int8_t sck, int8_t miso, int8_t mosi,
|
||||
uint32_t freq = 1000000,
|
||||
BusIOBitOrder dataOrder = SPI_BITORDER_MSBFIRST,
|
||||
uint8_t dataMode = SPI_MODE0);
|
||||
~Adafruit_SPIDevice();
|
||||
|
||||
bool begin(void);
|
||||
bool read(uint8_t *buffer, size_t len, uint8_t sendvalue = 0xFF);
|
||||
bool write(const uint8_t *buffer, size_t len,
|
||||
const uint8_t *prefix_buffer = nullptr, size_t prefix_len = 0);
|
||||
bool write_then_read(const uint8_t *write_buffer, size_t write_len,
|
||||
uint8_t *read_buffer, size_t read_len,
|
||||
uint8_t sendvalue = 0xFF);
|
||||
bool write_and_read(uint8_t *buffer, size_t len);
|
||||
|
||||
uint8_t transfer(uint8_t send);
|
||||
void transfer(uint8_t *buffer, size_t len);
|
||||
void beginTransaction(void);
|
||||
void endTransaction(void);
|
||||
void beginTransactionWithAssertingCS();
|
||||
void endTransactionWithDeassertingCS();
|
||||
|
||||
private:
|
||||
SPIClass *_spi;
|
||||
SPISettings *_spiSetting;
|
||||
uint32_t _freq;
|
||||
BusIOBitOrder _dataOrder;
|
||||
uint8_t _dataMode;
|
||||
void setChipSelect(int value);
|
||||
|
||||
int8_t _cs, _sck, _mosi, _miso;
|
||||
#ifdef BUSIO_USE_FAST_PINIO
|
||||
BusIO_PortReg *mosiPort, *clkPort, *misoPort, *csPort;
|
||||
BusIO_PortMask mosiPinMask, misoPinMask, clkPinMask, csPinMask;
|
||||
#endif
|
||||
bool _begun;
|
||||
};
|
||||
|
||||
#endif // has SPI defined
|
||||
#endif // Adafruit_SPIDevice_h
|
||||
11
firmware/lib/Adafruit_BusIO/CMakeLists.txt
Normal file
11
firmware/lib/Adafruit_BusIO/CMakeLists.txt
Normal file
@ -0,0 +1,11 @@
|
||||
# Adafruit Bus IO Library
|
||||
# https://github.com/adafruit/Adafruit_BusIO
|
||||
# MIT License
|
||||
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
idf_component_register(SRCS "Adafruit_I2CDevice.cpp" "Adafruit_BusIO_Register.cpp" "Adafruit_SPIDevice.cpp"
|
||||
INCLUDE_DIRS "."
|
||||
REQUIRES arduino)
|
||||
|
||||
project(Adafruit_BusIO)
|
||||
21
firmware/lib/Adafruit_BusIO/LICENSE
Normal file
21
firmware/lib/Adafruit_BusIO/LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2017 Adafruit Industries
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
8
firmware/lib/Adafruit_BusIO/README.md
Normal file
8
firmware/lib/Adafruit_BusIO/README.md
Normal file
@ -0,0 +1,8 @@
|
||||
# Adafruit Bus IO Library [](https://github.com/adafruit/Adafruit_BusIO/actions)
|
||||
|
||||
|
||||
This is a helper library to abstract away I2C & SPI transactions and registers
|
||||
|
||||
Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit!
|
||||
|
||||
MIT license, all text above must be included in any redistribution
|
||||
1
firmware/lib/Adafruit_BusIO/component.mk
Normal file
1
firmware/lib/Adafruit_BusIO/component.mk
Normal file
@ -0,0 +1 @@
|
||||
COMPONENT_ADD_INCLUDEDIRS = .
|
||||
@ -0,0 +1,21 @@
|
||||
#include <Adafruit_I2CDevice.h>
|
||||
|
||||
Adafruit_I2CDevice i2c_dev = Adafruit_I2CDevice(0x10);
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("I2C address detection test");
|
||||
|
||||
if (!i2c_dev.begin()) {
|
||||
Serial.print("Did not find device at 0x");
|
||||
Serial.println(i2c_dev.address(), HEX);
|
||||
while (1);
|
||||
}
|
||||
Serial.print("Device found on address 0x");
|
||||
Serial.println(i2c_dev.address(), HEX);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
@ -0,0 +1,41 @@
|
||||
#include <Adafruit_I2CDevice.h>
|
||||
|
||||
#define I2C_ADDRESS 0x60
|
||||
Adafruit_I2CDevice i2c_dev = Adafruit_I2CDevice(I2C_ADDRESS);
|
||||
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("I2C device read and write test");
|
||||
|
||||
if (!i2c_dev.begin()) {
|
||||
Serial.print("Did not find device at 0x");
|
||||
Serial.println(i2c_dev.address(), HEX);
|
||||
while (1);
|
||||
}
|
||||
Serial.print("Device found on address 0x");
|
||||
Serial.println(i2c_dev.address(), HEX);
|
||||
|
||||
uint8_t buffer[32];
|
||||
// Try to read 32 bytes
|
||||
i2c_dev.read(buffer, 32);
|
||||
Serial.print("Read: ");
|
||||
for (uint8_t i=0; i<32; i++) {
|
||||
Serial.print("0x"); Serial.print(buffer[i], HEX); Serial.print(", ");
|
||||
}
|
||||
Serial.println();
|
||||
|
||||
// read a register by writing first, then reading
|
||||
buffer[0] = 0x0C; // we'll reuse the same buffer
|
||||
i2c_dev.write_then_read(buffer, 1, buffer, 2, false);
|
||||
Serial.print("Write then Read: ");
|
||||
for (uint8_t i=0; i<2; i++) {
|
||||
Serial.print("0x"); Serial.print(buffer[i], HEX); Serial.print(", ");
|
||||
}
|
||||
Serial.println();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
@ -0,0 +1,38 @@
|
||||
#include <Adafruit_I2CDevice.h>
|
||||
#include <Adafruit_BusIO_Register.h>
|
||||
|
||||
#define I2C_ADDRESS 0x60
|
||||
Adafruit_I2CDevice i2c_dev = Adafruit_I2CDevice(I2C_ADDRESS);
|
||||
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("I2C device register test");
|
||||
|
||||
if (!i2c_dev.begin()) {
|
||||
Serial.print("Did not find device at 0x");
|
||||
Serial.println(i2c_dev.address(), HEX);
|
||||
while (1);
|
||||
}
|
||||
Serial.print("Device found on address 0x");
|
||||
Serial.println(i2c_dev.address(), HEX);
|
||||
|
||||
Adafruit_BusIO_Register id_reg = Adafruit_BusIO_Register(&i2c_dev, 0x0C, 2, LSBFIRST);
|
||||
uint16_t id;
|
||||
id_reg.read(&id);
|
||||
Serial.print("ID register = 0x"); Serial.println(id, HEX);
|
||||
|
||||
Adafruit_BusIO_Register thresh_reg = Adafruit_BusIO_Register(&i2c_dev, 0x01, 2, LSBFIRST);
|
||||
uint16_t thresh;
|
||||
thresh_reg.read(&thresh);
|
||||
Serial.print("Initial threshold register = 0x"); Serial.println(thresh, HEX);
|
||||
|
||||
thresh_reg.write(~thresh);
|
||||
|
||||
Serial.print("Post threshold register = 0x"); Serial.println(thresh_reg.read(), HEX);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
@ -0,0 +1,38 @@
|
||||
#include <Adafruit_BusIO_Register.h>
|
||||
|
||||
// Define which interface to use by setting the unused interface to NULL!
|
||||
|
||||
#define SPIDEVICE_CS 10
|
||||
Adafruit_SPIDevice *spi_dev = NULL; // new Adafruit_SPIDevice(SPIDEVICE_CS);
|
||||
|
||||
#define I2C_ADDRESS 0x5D
|
||||
Adafruit_I2CDevice *i2c_dev = new Adafruit_I2CDevice(I2C_ADDRESS);
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("I2C or SPI device register test");
|
||||
|
||||
if (spi_dev && !spi_dev->begin()) {
|
||||
Serial.println("Could not initialize SPI device");
|
||||
}
|
||||
|
||||
if (i2c_dev) {
|
||||
if (i2c_dev->begin()) {
|
||||
Serial.print("Device found on I2C address 0x");
|
||||
Serial.println(i2c_dev->address(), HEX);
|
||||
} else {
|
||||
Serial.print("Did not find I2C device at 0x");
|
||||
Serial.println(i2c_dev->address(), HEX);
|
||||
}
|
||||
}
|
||||
|
||||
Adafruit_BusIO_Register id_reg = Adafruit_BusIO_Register(i2c_dev, spi_dev, ADDRBIT8_HIGH_TOREAD, 0x0F);
|
||||
uint8_t id=0;
|
||||
id_reg.read(&id);
|
||||
Serial.print("ID register = 0x"); Serial.println(id, HEX);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
@ -0,0 +1,29 @@
|
||||
#include <Adafruit_SPIDevice.h>
|
||||
|
||||
#define SPIDEVICE_CS 10
|
||||
Adafruit_SPIDevice spi_dev = Adafruit_SPIDevice(SPIDEVICE_CS, 100000, SPI_BITORDER_MSBFIRST, SPI_MODE1);
|
||||
//Adafruit_SPIDevice spi_dev = Adafruit_SPIDevice(SPIDEVICE_CS, 13, 12, 11, 100000, SPI_BITORDER_MSBFIRST, SPI_MODE1);
|
||||
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("SPI device mode test");
|
||||
|
||||
if (!spi_dev.begin()) {
|
||||
Serial.println("Could not initialize SPI device");
|
||||
while (1);
|
||||
}
|
||||
}
|
||||
|
||||
void loop() {
|
||||
Serial.println("\n\nTransfer test");
|
||||
for (uint16_t x=0; x<=0xFF; x++) {
|
||||
uint8_t i = x;
|
||||
Serial.print("0x"); Serial.print(i, HEX);
|
||||
spi_dev.read(&i, 1, i);
|
||||
Serial.print("/"); Serial.print(i, HEX);
|
||||
Serial.print(", ");
|
||||
delay(25);
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,39 @@
|
||||
#include <Adafruit_SPIDevice.h>
|
||||
|
||||
#define SPIDEVICE_CS 10
|
||||
Adafruit_SPIDevice spi_dev = Adafruit_SPIDevice(SPIDEVICE_CS);
|
||||
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("SPI device read and write test");
|
||||
|
||||
if (!spi_dev.begin()) {
|
||||
Serial.println("Could not initialize SPI device");
|
||||
while (1);
|
||||
}
|
||||
|
||||
uint8_t buffer[32];
|
||||
|
||||
// Try to read 32 bytes
|
||||
spi_dev.read(buffer, 32);
|
||||
Serial.print("Read: ");
|
||||
for (uint8_t i=0; i<32; i++) {
|
||||
Serial.print("0x"); Serial.print(buffer[i], HEX); Serial.print(", ");
|
||||
}
|
||||
Serial.println();
|
||||
|
||||
// read a register by writing first, then reading
|
||||
buffer[0] = 0x8F; // we'll reuse the same buffer
|
||||
spi_dev.write_then_read(buffer, 1, buffer, 2, false);
|
||||
Serial.print("Write then Read: ");
|
||||
for (uint8_t i=0; i<2; i++) {
|
||||
Serial.print("0x"); Serial.print(buffer[i], HEX); Serial.print(", ");
|
||||
}
|
||||
Serial.println();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
@ -0,0 +1,192 @@
|
||||
/***************************************************
|
||||
|
||||
This is an example for how to use Adafruit_BusIO_RegisterBits from Adafruit_BusIO library.
|
||||
|
||||
Designed specifically to work with the Adafruit RTD Sensor
|
||||
----> https://www.adafruit.com/products/3328
|
||||
uisng a MAX31865 RTD-to-Digital Converter
|
||||
----> https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf
|
||||
|
||||
This sensor uses SPI to communicate, 4 pins are required to
|
||||
interface.
|
||||
A fifth pin helps to detect when a new conversion is ready.
|
||||
|
||||
Adafruit invests time and resources providing this open source code,
|
||||
please support Adafruit and open-source hardware by purchasing
|
||||
products from Adafruit!
|
||||
|
||||
Example written (2020/3) by Andreas Hardtung/AnHard.
|
||||
BSD license, all text above must be included in any redistribution
|
||||
****************************************************/
|
||||
|
||||
#include <Adafruit_BusIO_Register.h>
|
||||
#include <Adafruit_SPIDevice.h>
|
||||
|
||||
#define MAX31865_SPI_SPEED (5000000)
|
||||
#define MAX31865_SPI_BITORDER (SPI_BITORDER_MSBFIRST)
|
||||
#define MAX31865_SPI_MODE (SPI_MODE1)
|
||||
|
||||
#define MAX31865_SPI_CS (10)
|
||||
#define MAX31865_READY_PIN (2)
|
||||
|
||||
|
||||
Adafruit_SPIDevice spi_dev = Adafruit_SPIDevice( MAX31865_SPI_CS, MAX31865_SPI_SPEED, MAX31865_SPI_BITORDER, MAX31865_SPI_MODE, &SPI); // Hardware SPI
|
||||
// Adafruit_SPIDevice spi_dev = Adafruit_SPIDevice( MAX31865_SPI_CS, 13, 12, 11, MAX31865_SPI_SPEED, MAX31865_SPI_BITORDER, MAX31865_SPI_MODE); // Software SPI
|
||||
|
||||
// MAX31865 chip related *********************************************************************************************
|
||||
Adafruit_BusIO_Register config_reg = Adafruit_BusIO_Register(&spi_dev, 0x00, ADDRBIT8_HIGH_TOWRITE, 1, MSBFIRST);
|
||||
Adafruit_BusIO_RegisterBits bias_bit = Adafruit_BusIO_RegisterBits(&config_reg, 1, 7);
|
||||
Adafruit_BusIO_RegisterBits auto_bit = Adafruit_BusIO_RegisterBits(&config_reg, 1, 6);
|
||||
Adafruit_BusIO_RegisterBits oneS_bit = Adafruit_BusIO_RegisterBits(&config_reg, 1, 5);
|
||||
Adafruit_BusIO_RegisterBits wire_bit = Adafruit_BusIO_RegisterBits(&config_reg, 1, 4);
|
||||
Adafruit_BusIO_RegisterBits faultT_bits = Adafruit_BusIO_RegisterBits(&config_reg, 2, 2);
|
||||
Adafruit_BusIO_RegisterBits faultR_bit = Adafruit_BusIO_RegisterBits(&config_reg, 1, 1);
|
||||
Adafruit_BusIO_RegisterBits fi50hz_bit = Adafruit_BusIO_RegisterBits(&config_reg, 1, 0);
|
||||
|
||||
Adafruit_BusIO_Register rRatio_reg = Adafruit_BusIO_Register(&spi_dev, 0x01, ADDRBIT8_HIGH_TOWRITE, 2, MSBFIRST);
|
||||
Adafruit_BusIO_RegisterBits rRatio_bits = Adafruit_BusIO_RegisterBits(&rRatio_reg, 15, 1);
|
||||
Adafruit_BusIO_RegisterBits fault_bit = Adafruit_BusIO_RegisterBits(&rRatio_reg, 1, 0);
|
||||
|
||||
Adafruit_BusIO_Register maxRratio_reg = Adafruit_BusIO_Register(&spi_dev, 0x03, ADDRBIT8_HIGH_TOWRITE, 2, MSBFIRST);
|
||||
Adafruit_BusIO_RegisterBits maxRratio_bits = Adafruit_BusIO_RegisterBits(&maxRratio_reg, 15, 1);
|
||||
|
||||
Adafruit_BusIO_Register minRratio_reg = Adafruit_BusIO_Register(&spi_dev, 0x05, ADDRBIT8_HIGH_TOWRITE, 2, MSBFIRST);
|
||||
Adafruit_BusIO_RegisterBits minRratio_bits = Adafruit_BusIO_RegisterBits(&minRratio_reg, 15, 1);
|
||||
|
||||
Adafruit_BusIO_Register fault_reg = Adafruit_BusIO_Register(&spi_dev, 0x07, ADDRBIT8_HIGH_TOWRITE, 1, MSBFIRST);
|
||||
Adafruit_BusIO_RegisterBits range_high_fault_bit = Adafruit_BusIO_RegisterBits(&fault_reg, 1, 7);
|
||||
Adafruit_BusIO_RegisterBits range_low_fault_bit = Adafruit_BusIO_RegisterBits(&fault_reg, 1, 6);
|
||||
Adafruit_BusIO_RegisterBits refin_high_fault_bit = Adafruit_BusIO_RegisterBits(&fault_reg, 1, 5);
|
||||
Adafruit_BusIO_RegisterBits refin_low_fault_bit = Adafruit_BusIO_RegisterBits(&fault_reg, 1, 4);
|
||||
Adafruit_BusIO_RegisterBits rtdin_low_fault_bit = Adafruit_BusIO_RegisterBits(&fault_reg, 1, 3);
|
||||
Adafruit_BusIO_RegisterBits voltage_fault_bit = Adafruit_BusIO_RegisterBits(&fault_reg, 1, 2);
|
||||
|
||||
// Print the details of the configuration register.
|
||||
void printConfig( void ) {
|
||||
Serial.print("BIAS: "); if (bias_bit.read() ) Serial.print("ON"); else Serial.print("OFF");
|
||||
Serial.print(", AUTO: "); if (auto_bit.read() ) Serial.print("ON"); else Serial.print("OFF");
|
||||
Serial.print(", ONES: "); if (oneS_bit.read() ) Serial.print("ON"); else Serial.print("OFF");
|
||||
Serial.print(", WIRE: "); if (wire_bit.read() ) Serial.print("3"); else Serial.print("2/4");
|
||||
Serial.print(", FAULTCLEAR: "); if (faultR_bit.read() ) Serial.print("ON"); else Serial.print("OFF");
|
||||
Serial.print(", "); if (fi50hz_bit.read() ) Serial.print("50HZ"); else Serial.print("60HZ");
|
||||
Serial.println();
|
||||
}
|
||||
|
||||
// Check and print faults. Then clear them.
|
||||
void checkFaults( void ) {
|
||||
if (fault_bit.read()) {
|
||||
Serial.print("MAX: "); Serial.println(maxRratio_bits.read());
|
||||
Serial.print("VAL: "); Serial.println( rRatio_bits.read());
|
||||
Serial.print("MIN: "); Serial.println(minRratio_bits.read());
|
||||
|
||||
if (range_high_fault_bit.read() ) Serial.println("Range high fault");
|
||||
if ( range_low_fault_bit.read() ) Serial.println("Range low fault");
|
||||
if (refin_high_fault_bit.read() ) Serial.println("REFIN high fault");
|
||||
if ( refin_low_fault_bit.read() ) Serial.println("REFIN low fault");
|
||||
if ( rtdin_low_fault_bit.read() ) Serial.println("RTDIN low fault");
|
||||
if ( voltage_fault_bit.read() ) Serial.println("Voltage fault");
|
||||
|
||||
faultR_bit.write(1); // clear fault
|
||||
}
|
||||
}
|
||||
|
||||
void setup() {
|
||||
#if (MAX31865_1_READY_PIN != -1)
|
||||
pinMode(MAX31865_READY_PIN ,INPUT_PULLUP);
|
||||
#endif
|
||||
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("SPI Adafruit_BusIO_RegisterBits test on MAX31865");
|
||||
|
||||
if (!spi_dev.begin()) {
|
||||
Serial.println("Could not initialize SPI device");
|
||||
while (1);
|
||||
}
|
||||
|
||||
// Set up for automode 50Hz. We don't care about selfheating. We want the highest possible sampling rate.
|
||||
auto_bit.write(0); // Don't switch filtermode while auto_mode is on.
|
||||
fi50hz_bit.write(1); // Set filter to 50Hz mode.
|
||||
faultR_bit.write(1); // Clear faults.
|
||||
bias_bit.write(1); // In automode we want to have the bias current always on.
|
||||
delay(5); // Wait until bias current settles down.
|
||||
// 10.5 time constants of the input RC network is required.
|
||||
// 10ms worst case for 10kω reference resistor and a 0.1µF capacitor across the RTD inputs.
|
||||
// Adafruit Module has 0.1µF and only 430/4300ω So here 0.43/4.3ms
|
||||
auto_bit.write(1); // Now we can set automode. Automatically starting first conversion.
|
||||
|
||||
// Test the READY_PIN
|
||||
#if (defined( MAX31865_READY_PIN ) && (MAX31865_READY_PIN != -1))
|
||||
int i = 0;
|
||||
while (digitalRead(MAX31865_READY_PIN) && i++ <= 100) { delay(1); }
|
||||
if (i >= 100) {
|
||||
Serial.print("ERROR: Max31865 Pin detection does not work. PIN:");
|
||||
Serial.println(MAX31865_READY_PIN);
|
||||
}
|
||||
#else
|
||||
delay(100);
|
||||
#endif
|
||||
|
||||
// Set ratio range.
|
||||
// Setting the temperatures would need some more calculation - not related to Adafruit_BusIO_RegisterBits.
|
||||
uint16_t ratio = rRatio_bits.read();
|
||||
maxRratio_bits.write( (ratio < 0x8fffu-1000u) ? ratio + 1000u : 0x8fffu );
|
||||
minRratio_bits.write( (ratio > 1000u) ? ratio - 1000u : 0u );
|
||||
|
||||
printConfig();
|
||||
checkFaults();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
#if (defined( MAX31865_READY_PIN ) && (MAX31865_1_READY_PIN != -1))
|
||||
// Is conversion ready?
|
||||
if (!digitalRead(MAX31865_READY_PIN))
|
||||
#else
|
||||
// Warant conversion is ready.
|
||||
delay(21); // 21ms for 50Hz-mode. 19ms in 60Hz-mode.
|
||||
#endif
|
||||
{
|
||||
// Read ratio, calculate temperature, scale, filter and print.
|
||||
Serial.println( rRatio2C( rRatio_bits.read() ) * 100.0f, 0); // Temperature scaled by 100
|
||||
// Check, print, clear faults.
|
||||
checkFaults();
|
||||
}
|
||||
|
||||
// Do something else.
|
||||
//delay(15000);
|
||||
}
|
||||
|
||||
|
||||
// Module/Sensor related. Here Adafruit PT100 module with a 2_Wire PT100 Class C *****************************
|
||||
float rRatio2C(uint16_t ratio) {
|
||||
// A simple linear conversion.
|
||||
const float R0 = 100.0f;
|
||||
const float Rref = 430.0f;
|
||||
const float alphaPT = 0.003850f;
|
||||
const float ADCmax = (1u << 15) - 1.0f;
|
||||
const float rscale = Rref / ADCmax;
|
||||
// Measured temperature in boiling water 101.08°C with factor a = 1 and b = 0. Rref and MAX at about 22±2°C.
|
||||
// Measured temperature in ice/water bath 0.76°C with factor a = 1 and b = 0. Rref and MAX at about 22±2°C.
|
||||
//const float a = 1.0f / (alphaPT * R0);
|
||||
const float a = (100.0f/101.08f) / (alphaPT * R0);
|
||||
//const float b = 0.0f; // 101.08
|
||||
const float b = -0.76f; // 100.32 > 101.08
|
||||
|
||||
return filterRing( ((ratio * rscale) - R0) * a + b );
|
||||
}
|
||||
|
||||
// General purpose *********************************************************************************************
|
||||
#define RINGLENGTH 250
|
||||
float filterRing( float newVal ) {
|
||||
static float ring[RINGLENGTH] = { 0.0 };
|
||||
static uint8_t ringIndex = 0;
|
||||
static bool ringFull = false;
|
||||
|
||||
if ( ringIndex == RINGLENGTH ) { ringFull = true; ringIndex = 0; }
|
||||
ring[ringIndex] = newVal;
|
||||
uint8_t loopEnd = (ringFull) ? RINGLENGTH : ringIndex + 1;
|
||||
float ringSum = 0.0f;
|
||||
for (uint8_t i = 0; i < loopEnd; i++) ringSum += ring[i];
|
||||
ringIndex++;
|
||||
return ringSum / loopEnd;
|
||||
}
|
||||
@ -0,0 +1,34 @@
|
||||
#include <Adafruit_BusIO_Register.h>
|
||||
#include <Adafruit_SPIDevice.h>
|
||||
|
||||
#define SPIDEVICE_CS 10
|
||||
Adafruit_SPIDevice spi_dev = Adafruit_SPIDevice(SPIDEVICE_CS);
|
||||
|
||||
void setup() {
|
||||
while (!Serial) { delay(10); }
|
||||
Serial.begin(115200);
|
||||
Serial.println("SPI device register test");
|
||||
|
||||
if (!spi_dev.begin()) {
|
||||
Serial.println("Could not initialize SPI device");
|
||||
while (1);
|
||||
}
|
||||
|
||||
Adafruit_BusIO_Register id_reg = Adafruit_BusIO_Register(&spi_dev, 0x0F, ADDRBIT8_HIGH_TOREAD);
|
||||
uint8_t id = 0;
|
||||
id_reg.read(&id);
|
||||
Serial.print("ID register = 0x"); Serial.println(id, HEX);
|
||||
|
||||
Adafruit_BusIO_Register thresh_reg = Adafruit_BusIO_Register(&spi_dev, 0x0C, ADDRBIT8_HIGH_TOREAD, 2, LSBFIRST);
|
||||
uint16_t thresh = 0;
|
||||
thresh_reg.read(&thresh);
|
||||
Serial.print("Initial threshold register = 0x"); Serial.println(thresh, HEX);
|
||||
|
||||
thresh_reg.write(~thresh);
|
||||
|
||||
Serial.print("Post threshold register = 0x"); Serial.println(thresh_reg.read(), HEX);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
9
firmware/lib/Adafruit_BusIO/library.properties
Normal file
9
firmware/lib/Adafruit_BusIO/library.properties
Normal file
@ -0,0 +1,9 @@
|
||||
name=Adafruit BusIO
|
||||
version=1.13.2
|
||||
author=Adafruit
|
||||
maintainer=Adafruit <info@adafruit.com>
|
||||
sentence=This is a library for abstracting away UART, I2C and SPI interfacing
|
||||
paragraph=This is a library for abstracting away UART, I2C and SPI interfacing
|
||||
category=Signal Input/Output
|
||||
url=https://github.com/adafruit/Adafruit_BusIO
|
||||
architectures=*
|
||||
46
firmware/lib/Adafruit_DotStar/.github/ISSUE_TEMPLATE.md
vendored
Normal file
46
firmware/lib/Adafruit_DotStar/.github/ISSUE_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
Thank you for opening an issue on an Adafruit Arduino library repository. To
|
||||
improve the speed of resolution please review the following guidelines and
|
||||
common troubleshooting steps below before creating the issue:
|
||||
|
||||
- **Do not use GitHub issues for troubleshooting projects and issues.** Instead use
|
||||
the forums at http://forums.adafruit.com to ask questions and troubleshoot why
|
||||
something isn't working as expected. In many cases the problem is a common issue
|
||||
that you will more quickly receive help from the forum community. GitHub issues
|
||||
are meant for known defects in the code. If you don't know if there is a defect
|
||||
in the code then start with troubleshooting on the forum first.
|
||||
|
||||
- **If following a tutorial or guide be sure you didn't miss a step.** Carefully
|
||||
check all of the steps and commands to run have been followed. Consult the
|
||||
forum if you're unsure or have questions about steps in a guide/tutorial.
|
||||
|
||||
- **For Arduino projects check these very common issues to ensure they don't apply**:
|
||||
|
||||
- For uploading sketches or communicating with the board make sure you're using
|
||||
a **USB data cable** and **not** a **USB charge-only cable**. It is sometimes
|
||||
very hard to tell the difference between a data and charge cable! Try using the
|
||||
cable with other devices or swapping to another cable to confirm it is not
|
||||
the problem.
|
||||
|
||||
- **Be sure you are supplying adequate power to the board.** Check the specs of
|
||||
your board and plug in an external power supply. In many cases just
|
||||
plugging a board into your computer is not enough to power it and other
|
||||
peripherals.
|
||||
|
||||
- **Double check all soldering joints and connections.** Flakey connections
|
||||
cause many mysterious problems. See the [guide to excellent soldering](https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools) for examples of good solder joints.
|
||||
|
||||
- **Ensure you are using an official Arduino or Adafruit board.** We can't
|
||||
guarantee a clone board will have the same functionality and work as expected
|
||||
with this code and don't support them.
|
||||
|
||||
If you're sure this issue is a defect in the code and checked the steps above
|
||||
please fill in the following fields to provide enough troubleshooting information.
|
||||
You may delete the guideline and text above to just leave the following details:
|
||||
|
||||
- Arduino board: **INSERT ARDUINO BOARD NAME/TYPE HERE**
|
||||
|
||||
- Arduino IDE version (found in Arduino -> About Arduino menu): **INSERT ARDUINO
|
||||
VERSION HERE**
|
||||
|
||||
- List the steps to reproduce the problem below (if possible attach a sketch or
|
||||
copy the sketch code in too): **LIST REPRO STEPS BELOW**
|
||||
26
firmware/lib/Adafruit_DotStar/.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
26
firmware/lib/Adafruit_DotStar/.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
Thank you for creating a pull request to contribute to Adafruit's GitHub code!
|
||||
Before you open the request please review the following guidelines and tips to
|
||||
help it be more easily integrated:
|
||||
|
||||
- **Describe the scope of your change--i.e. what the change does and what parts
|
||||
of the code were modified.** This will help us understand any risks of integrating
|
||||
the code.
|
||||
|
||||
- **Describe any known limitations with your change.** For example if the change
|
||||
doesn't apply to a supported platform of the library please mention it.
|
||||
|
||||
- **Please run any tests or examples that can exercise your modified code.** We
|
||||
strive to not break users of the code and running tests/examples helps with this
|
||||
process.
|
||||
|
||||
Thank you again for contributing! We will try to test and integrate the change
|
||||
as soon as we can, but be aware we have many GitHub repositories to manage and
|
||||
can't immediately respond to every request. There is no need to bump or check in
|
||||
on a pull request (it will clutter the discussion of the request).
|
||||
|
||||
Also don't be worried if the request is closed or not integrated--sometimes the
|
||||
priorities of Adafruit's GitHub code (education, ease of use) might not match the
|
||||
priorities of the pull request. Don't fret, the open source community thrives on
|
||||
forks and GitHub makes it easy to keep your changes in a forked repo.
|
||||
|
||||
After reviewing the guidelines above you can delete this text from the pull request.
|
||||
32
firmware/lib/Adafruit_DotStar/.github/workflows/githubci.yml
vendored
Normal file
32
firmware/lib/Adafruit_DotStar/.github/workflows/githubci.yml
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
name: Arduino Library CI
|
||||
|
||||
on: [pull_request, push, repository_dispatch]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: '3.x'
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: adafruit/ci-arduino
|
||||
path: ci
|
||||
|
||||
- name: pre-install
|
||||
run: bash ci/actions_install.sh
|
||||
|
||||
- name: test platforms
|
||||
run: python3 ci/build_platform.py main_platforms
|
||||
|
||||
- name: clang
|
||||
run: python3 ci/run-clang-format.py -e "ci/*" -e "bin/*" -r .
|
||||
|
||||
- name: doxygen
|
||||
env:
|
||||
GH_REPO_TOKEN: ${{ secrets.GH_REPO_TOKEN }}
|
||||
PRETTYNAME : "Adafruit DotStar Arduino Library"
|
||||
run: bash ci/doxy_gen_and_deploy.sh
|
||||
4
firmware/lib/Adafruit_DotStar/.gitignore
vendored
Normal file
4
firmware/lib/Adafruit_DotStar/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
# Our handy .gitignore for automation ease
|
||||
Doxyfile*
|
||||
doxygen_sqlite3.db
|
||||
html
|
||||
492
firmware/lib/Adafruit_DotStar/Adafruit_DotStar.cpp
Normal file
492
firmware/lib/Adafruit_DotStar/Adafruit_DotStar.cpp
Normal file
@ -0,0 +1,492 @@
|
||||
/*!
|
||||
* @file Adafruit_DotStar.cpp
|
||||
*
|
||||
* @mainpage Arduino Library for driving Adafruit DotStar addressable LEDs
|
||||
* and compatible devicess -- APA102, etc.
|
||||
*
|
||||
* @section intro_sec Introduction
|
||||
*
|
||||
* This is the documentation for Adafruit's DotStar library for the
|
||||
* Arduino platform, allowing a broad range of microcontroller boards
|
||||
* (most AVR boards, many ARM devices, ESP8266 and ESP32, among others)
|
||||
* to control Adafruit DotStars and compatible devices -- APA102, etc.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing products
|
||||
* from Adafruit!
|
||||
*
|
||||
* @section author Author
|
||||
*
|
||||
* Written by Limor Fried and Phil Burgess for Adafruit Industries with
|
||||
* contributions from members of the open source community.
|
||||
*
|
||||
* @section license License
|
||||
*
|
||||
* This file is part of the Adafruit_DotStar library.
|
||||
*
|
||||
* Adafruit_DotStar is free software: you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public License as
|
||||
* published by the Free Software Foundation, either version 3 of the
|
||||
* License, or (at your option) any later version.
|
||||
*
|
||||
* Adafruit_DotStar is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with DotStar. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "Adafruit_DotStar.h"
|
||||
|
||||
/*!
|
||||
@brief DotStar constructor for hardware SPI. Must be connected to
|
||||
MOSI, SCK pins.
|
||||
@param n Number of DotStars in strand.
|
||||
@param o Pixel type -- one of the DOTSTAR_* constants defined in
|
||||
Adafruit_DotStar.h, for example DOTSTAR_BRG for DotStars
|
||||
expecting color bytes expressed in blue, red, green order
|
||||
per pixel. Default if unspecified is DOTSTAR_BRG.
|
||||
@return Adafruit_DotStar object. Call the begin() function before use.
|
||||
*/
|
||||
Adafruit_DotStar::Adafruit_DotStar(uint16_t n, uint8_t o)
|
||||
: numLEDs(n), brightness(0), pixels(NULL), rOffset(o & 3),
|
||||
gOffset((o >> 2) & 3), bOffset((o >> 4) & 3) {
|
||||
spi_dev = new Adafruit_SPIDevice(-1, 8000000);
|
||||
updateLength(n);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief DotStar constructor for 'soft' (bitbang) SPI. Any two pins
|
||||
can be used.
|
||||
@param n Number of DotStars in strand.
|
||||
@param data Arduino pin number for data out.
|
||||
@param clock Arduino pin number for clock out.
|
||||
@param o Pixel type -- one of the DOTSTAR_* constants defined in
|
||||
Adafruit_DotStar.h, for example DOTSTAR_BRG for DotStars
|
||||
expecting color bytes expressed in blue, red, green order
|
||||
per pixel. Default if unspecified is DOTSTAR_BRG.
|
||||
@return Adafruit_DotStar object. Call the begin() function before use.
|
||||
*/
|
||||
Adafruit_DotStar::Adafruit_DotStar(uint16_t n, uint8_t data, uint8_t clock,
|
||||
uint8_t o)
|
||||
: brightness(0), pixels(NULL), rOffset(o & 3), gOffset((o >> 2) & 3),
|
||||
bOffset((o >> 4) & 3) {
|
||||
spi_dev = new Adafruit_SPIDevice(-1, clock, -1, data, 8000000);
|
||||
updateLength(n);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Deallocate Adafruit_DotStar object, set data and clock pins
|
||||
back to INPUT.
|
||||
*/
|
||||
Adafruit_DotStar::~Adafruit_DotStar(void) {
|
||||
free(pixels);
|
||||
if (spi_dev)
|
||||
delete (spi_dev);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Initialize Adafruit_DotStar object -- sets data and clock pins
|
||||
to outputs and initializes hardware SPI if necessary.
|
||||
*/
|
||||
void Adafruit_DotStar::begin(void) { spi_dev->begin(); }
|
||||
|
||||
// Pins may be reassigned post-begin(), so a sketch can store hardware
|
||||
// config in flash, SD card, etc. rather than hardcoded. Also permits
|
||||
// "recycling" LED ram across multiple strips: set pins to first strip,
|
||||
// render & write all data, reassign pins to next strip, render & write,
|
||||
// etc. They won't update simultaneously, but usually unnoticeable.
|
||||
|
||||
/*!
|
||||
@brief Switch over to hardware SPI. DotStars must be connected to
|
||||
MOSI, SCK pins. Data in pixel buffer is unaffected and can
|
||||
continue to be used.
|
||||
*/
|
||||
void Adafruit_DotStar::updatePins(void) {
|
||||
if (spi_dev)
|
||||
delete (spi_dev);
|
||||
spi_dev = new Adafruit_SPIDevice(-1, 8000000);
|
||||
spi_dev->begin();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Switch over to 'soft' (bitbang) SPI. DotStars can be connected
|
||||
to any two pins. Data in pixel buffer is unaffected and can
|
||||
continue to be used.
|
||||
@param data Arduino pin number for data out.
|
||||
@param clock Arduino pin number for clock out.
|
||||
*/
|
||||
void Adafruit_DotStar::updatePins(uint8_t data, uint8_t clock) {
|
||||
if (spi_dev)
|
||||
delete (spi_dev);
|
||||
spi_dev = new Adafruit_SPIDevice(-1, clock, -1, data, 8000000);
|
||||
spi_dev->begin();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Change the length of a previously-declared Adafruit_DotStar
|
||||
strip object. Old data is deallocated and new data is cleared.
|
||||
Pin numbers and pixel format are unchanged.
|
||||
@param n New length of strip, in pixels.
|
||||
@note This function is deprecated, here only for old projects that
|
||||
may still be calling it. New projects should instead use the
|
||||
'new' keyword.
|
||||
*/
|
||||
void Adafruit_DotStar::updateLength(uint16_t n) {
|
||||
free(pixels);
|
||||
uint16_t bytes = (rOffset == gOffset)
|
||||
? n + ((n + 3) / 4)
|
||||
: // MONO: 10 bits/pixel, round up to next byte
|
||||
n * 3; // COLOR: 3 bytes/pixel
|
||||
if ((pixels = (uint8_t *)malloc(bytes))) {
|
||||
numLEDs = n;
|
||||
clear();
|
||||
} else {
|
||||
numLEDs = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// SPI STUFF ---------------------------------------------------------------
|
||||
|
||||
/* ISSUE DATA TO LED STRIP -------------------------------------------------
|
||||
|
||||
Although the LED driver has an additional per-pixel 5-bit brightness
|
||||
setting, it is NOT used or supported here. On APA102, the normally
|
||||
very fast PWM is gated through a much slower PWM (about 400 Hz),
|
||||
rendering it useless for POV or other high-speed things that are
|
||||
probably why one is using DotStars instead of NeoPixels in the first
|
||||
place. I'm told that some APA102 clones use current control rather than
|
||||
PWM for this, which would be much more worthwhile. Still, no support
|
||||
here, no plans for it. If you really can't live without it, you can fork
|
||||
the library and add it for your own use, but any pull requests for this
|
||||
are unlikely be merged for the foreseeable future.
|
||||
*/
|
||||
|
||||
/*!
|
||||
@brief Transmit pixel data in RAM to DotStars.
|
||||
*/
|
||||
void Adafruit_DotStar::show(void) {
|
||||
if (!pixels)
|
||||
return;
|
||||
|
||||
uint8_t *ptr = pixels, i; // -> LED data
|
||||
uint16_t n = numLEDs; // Counter
|
||||
uint16_t b16 = (uint16_t)brightness; // Type-convert for fixed-point math
|
||||
|
||||
// Begin transaction, setting SPI frequency
|
||||
spi_dev->beginTransaction();
|
||||
|
||||
// [START FRAME]
|
||||
for (i = 0; i < 4; i++)
|
||||
spi_dev->transfer(0x00);
|
||||
|
||||
// [PIXEL DATA]
|
||||
if (brightness) { // Scale pixel brightness on output
|
||||
do { // For each pixel...
|
||||
spi_dev->transfer(0xFF); // Pixel start
|
||||
for (i = 0; i < 3; i++)
|
||||
spi_dev->transfer((*ptr++ * b16) >> 8); // Scale, write
|
||||
} while (--n);
|
||||
} else { // Full brightness (no scaling)
|
||||
do { // For each pixel...
|
||||
spi_dev->transfer(0xFF); // Pixel start
|
||||
for (i = 0; i < 3; i++)
|
||||
spi_dev->transfer(*ptr++); // R,G,B
|
||||
} while (--n);
|
||||
}
|
||||
|
||||
// [END FRAME]
|
||||
// Four end-frame bytes are seemingly indistinguishable from a white
|
||||
// pixel, and empirical testing suggests it can be left out...but it's
|
||||
// always a good idea to follow the datasheet, in case future hardware
|
||||
// revisions are more strict (e.g. might mandate use of end-frame
|
||||
// before start-frame marker). i.e. let's not remove this. But after
|
||||
// testing a bit more the suggestion is to use at least (numLeds+1)/2
|
||||
// high values (1) or (numLeds+15)/16 full bytes as EndFrame. For details
|
||||
// see also:
|
||||
// https://cpldcpu.wordpress.com/2014/11/30/understanding-the-apa102-superled/
|
||||
for (i = 0; i < ((numLEDs + 15) / 16); i++)
|
||||
spi_dev->transfer(0xFF);
|
||||
|
||||
// Finish SPI transaction
|
||||
spi_dev->endTransaction();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Fill the whole DotStar strip with 0 / black / off.
|
||||
*/
|
||||
void Adafruit_DotStar::clear() {
|
||||
memset(pixels, 0,
|
||||
(rOffset == gOffset) ? numLEDs + ((numLEDs + 3) / 4)
|
||||
: // MONO: 10 bits/pixel
|
||||
numLEDs * 3); // COLOR: 3 bytes/pixel
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Set a pixel's color using separate red, green and blue components.
|
||||
@param n Pixel index, starting from 0.
|
||||
@param r Red brightness, 0 = minimum (off), 255 = maximum.
|
||||
@param g Green brightness, 0 = minimum (off), 255 = maximum.
|
||||
@param b Blue brightness, 0 = minimum (off), 255 = maximum.
|
||||
*/
|
||||
void Adafruit_DotStar::setPixelColor(uint16_t n, uint8_t r, uint8_t g,
|
||||
uint8_t b) {
|
||||
if (n < numLEDs) {
|
||||
uint8_t *p = &pixels[n * 3];
|
||||
p[rOffset] = r;
|
||||
p[gOffset] = g;
|
||||
p[bOffset] = b;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Set a pixel's color using a 32-bit 'packed' RGB value.
|
||||
@param n Pixel index, starting from 0.
|
||||
@param c 32-bit color value. Most significant byte is 0, second is
|
||||
red, then green, and least significant byte is blue.
|
||||
e.g. 0x00RRGGBB
|
||||
*/
|
||||
void Adafruit_DotStar::setPixelColor(uint16_t n, uint32_t c) {
|
||||
if (n < numLEDs) {
|
||||
uint8_t *p = &pixels[n * 3];
|
||||
p[rOffset] = (uint8_t)(c >> 16);
|
||||
p[gOffset] = (uint8_t)(c >> 8);
|
||||
p[bOffset] = (uint8_t)c;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Fill all or part of the DotStar strip with a color.
|
||||
@param c 32-bit color value. Most significant byte is 0, second
|
||||
is red, then green, and least significant byte is blue.
|
||||
e.g. 0x00RRGGBB. If all arguments are unspecified, this
|
||||
will be 0 (off).
|
||||
@param first Index of first pixel to fill, starting from 0. Must be
|
||||
in-bounds, no clipping is performed. 0 if unspecified.
|
||||
@param count Number of pixels to fill, as a positive value. Passing
|
||||
0 or leaving unspecified will fill to end of strip.
|
||||
*/
|
||||
void Adafruit_DotStar::fill(uint32_t c, uint16_t first, uint16_t count) {
|
||||
uint16_t i, end;
|
||||
|
||||
if (first >= numLEDs) {
|
||||
return; // If first LED is past end of strip, nothing to do
|
||||
}
|
||||
|
||||
// Calculate the index ONE AFTER the last pixel to fill
|
||||
if (count == 0) {
|
||||
// Fill to end of strip
|
||||
end = numLEDs;
|
||||
} else {
|
||||
// Ensure that the loop won't go past the last pixel
|
||||
end = first + count;
|
||||
if (end > numLEDs)
|
||||
end = numLEDs;
|
||||
}
|
||||
|
||||
for (i = first; i < end; i++) {
|
||||
this->setPixelColor(i, c);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Convert hue, saturation and value into a packed 32-bit RGB color
|
||||
that can be passed to setPixelColor() or other RGB-compatible
|
||||
functions.
|
||||
@param hue An unsigned 16-bit value, 0 to 65535, representing one full
|
||||
loop of the color wheel, which allows 16-bit hues to "roll
|
||||
over" while still doing the expected thing (and allowing
|
||||
more precision than the wheel() function that was common to
|
||||
prior DotStar and NeoPixel examples).
|
||||
@param sat Saturation, 8-bit value, 0 (min or pure grayscale) to 255
|
||||
(max or pure hue). Default of 255 if unspecified.
|
||||
@param val Value (brightness), 8-bit value, 0 (min / black / off) to
|
||||
255 (max or full brightness). Default of 255 if unspecified.
|
||||
@return Packed 32-bit RGB color. Result is linearly but not perceptually
|
||||
correct, so you may want to pass the result through the gamma32()
|
||||
function (or your own gamma-correction operation) else colors may
|
||||
appear washed out. This is not done automatically by this
|
||||
function because coders may desire a more refined gamma-
|
||||
correction function than the simplified one-size-fits-all
|
||||
operation of gamma32(). Diffusing the LEDs also really seems to
|
||||
help when using low-saturation colors.
|
||||
*/
|
||||
uint32_t Adafruit_DotStar::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
|
||||
|
||||
uint8_t r, g, b;
|
||||
|
||||
// Remap 0-65535 to 0-1529. Pure red is CENTERED on the 64K rollover;
|
||||
// 0 is not the start of pure red, but the midpoint...a few values above
|
||||
// zero and a few below 65536 all yield pure red (similarly, 32768 is the
|
||||
// midpoint, not start, of pure cyan). The 8-bit RGB hexcone (256 values
|
||||
// each for red, green, blue) really only allows for 1530 distinct hues
|
||||
// (not 1536, more on that below), but the full unsigned 16-bit type was
|
||||
// chosen for hue so that one's code can easily handle a contiguous color
|
||||
// wheel by allowing hue to roll over in either direction.
|
||||
hue = (hue * 1530L + 32768) / 65536;
|
||||
// Because red is centered on the rollover point (the +32768 above,
|
||||
// essentially a fixed-point +0.5), the above actually yields 0 to 1530,
|
||||
// where 0 and 1530 would yield the same thing. Rather than apply a
|
||||
// costly modulo operator, 1530 is handled as a special case below.
|
||||
|
||||
// So you'd think that the color "hexcone" (the thing that ramps from
|
||||
// pure red, to pure yellow, to pure green and so forth back to red,
|
||||
// yielding six slices), and with each color component having 256
|
||||
// possible values (0-255), might have 1536 possible items (6*256),
|
||||
// but in reality there's 1530. This is because the last element in
|
||||
// each 256-element slice is equal to the first element of the next
|
||||
// slice, and keeping those in there this would create small
|
||||
// discontinuities in the color wheel. So the last element of each
|
||||
// slice is dropped...we regard only elements 0-254, with item 255
|
||||
// being picked up as element 0 of the next slice. Like this:
|
||||
// Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0
|
||||
// Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0
|
||||
// Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254
|
||||
// and so forth. Hence, 1530 distinct hues (0 to 1529), and hence why
|
||||
// the constants below are not the multiples of 256 you might expect.
|
||||
|
||||
// Convert hue to R,G,B (nested ifs faster than divide+mod+switch):
|
||||
if (hue < 510) { // Red to Green-1
|
||||
b = 0;
|
||||
if (hue < 255) { // Red to Yellow-1
|
||||
r = 255;
|
||||
g = hue; // g = 0 to 254
|
||||
} else { // Yellow to Green-1
|
||||
r = 510 - hue; // r = 255 to 1
|
||||
g = 255;
|
||||
}
|
||||
} else if (hue < 1020) { // Green to Blue-1
|
||||
r = 0;
|
||||
if (hue < 765) { // Green to Cyan-1
|
||||
g = 255;
|
||||
b = hue - 510; // b = 0 to 254
|
||||
} else { // Cyan to Blue-1
|
||||
g = 1020 - hue; // g = 255 to 1
|
||||
b = 255;
|
||||
}
|
||||
} else if (hue < 1530) { // Blue to Red-1
|
||||
g = 0;
|
||||
if (hue < 1275) { // Blue to Magenta-1
|
||||
r = hue - 1020; // r = 0 to 254
|
||||
b = 255;
|
||||
} else { // Magenta to Red-1
|
||||
r = 255;
|
||||
b = 1530 - hue; // b = 255 to 1
|
||||
}
|
||||
} else { // Last 0.5 Red (quicker than % operator)
|
||||
r = 255;
|
||||
g = b = 0;
|
||||
}
|
||||
|
||||
// Apply saturation and value to R,G,B, pack into 32-bit result:
|
||||
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
|
||||
uint16_t s1 = 1 + sat; // 1 to 256; same reason
|
||||
uint8_t s2 = 255 - sat; // 255 to 0
|
||||
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
|
||||
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
|
||||
(((((b * s1) >> 8) + s2) * v1) >> 8);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Query the color of a previously-set pixel.
|
||||
@param n Index of pixel to read (0 = first).
|
||||
@return 'Packed' 32-bit RGB value. Most significant byte is 0, second is
|
||||
is red, then green, and least significant byte is blue.
|
||||
*/
|
||||
uint32_t Adafruit_DotStar::getPixelColor(uint16_t n) const {
|
||||
if (n >= numLEDs)
|
||||
return 0;
|
||||
uint8_t *p = &pixels[n * 3];
|
||||
return ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) |
|
||||
(uint32_t)p[bOffset];
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Adjust output brightness. Does not immediately affect what's
|
||||
currently displayed on the LEDs. The next call to show() will
|
||||
refresh the LEDs at this level.
|
||||
@param b Brightness setting, 0=minimum (off), 255=brightest.
|
||||
@note For various reasons I think brightness is better handled in
|
||||
one's sketch, but it's here for parity with the NeoPixel
|
||||
library. Good news is that brightness setting in this library
|
||||
is 'non destructive' -- it's applied as color data is being
|
||||
issued to the strip, not during setPixelColor(), and also
|
||||
means that getPixelColor() returns the exact value originally
|
||||
stored.
|
||||
*/
|
||||
void Adafruit_DotStar::setBrightness(uint8_t b) {
|
||||
// Stored brightness value is different than what's passed. This
|
||||
// optimizes the actual scaling math later, allowing a fast 8x8-bit
|
||||
// multiply and taking the MSB. 'brightness' is a uint8_t, adding 1
|
||||
// here may (intentionally) roll over...so 0 = max brightness (color
|
||||
// values are interpreted literally; no scaling), 1 = min brightness
|
||||
// (off), 255 = just below max brightness.
|
||||
brightness = b + 1;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Retrieve the last-set brightness value for the strip.
|
||||
@return Brightness value: 0 = minimum (off), 255 = maximum.
|
||||
*/
|
||||
uint8_t Adafruit_DotStar::getBrightness(void) const {
|
||||
return brightness - 1; // Reverse above operation
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief A gamma-correction function for 32-bit packed RGB colors.
|
||||
Makes color transitions appear more perceptially correct.
|
||||
@param x 32-bit packed RGB color.
|
||||
@return Gamma-adjusted packed color, can then be passed in one of the
|
||||
setPixelColor() functions. Like gamma8(), this uses a fixed
|
||||
gamma correction exponent of 2.6, which seems reasonably okay
|
||||
for average DotStars in average tasks. If you need finer
|
||||
control you'll need to provide your own gamma-correction
|
||||
function instead.
|
||||
*/
|
||||
uint32_t Adafruit_DotStar::gamma32(uint32_t x) {
|
||||
uint8_t *y = (uint8_t *)&x;
|
||||
// All four bytes of a 32-bit value are filtered to avoid a bunch of
|
||||
// shifting and masking that would be necessary for properly handling
|
||||
// different endianisms (and each byte is a fairly trivial operation,
|
||||
// so it might not even be wasting cycles vs a check and branch.
|
||||
// In theory this might cause trouble *if* someone's storing information
|
||||
// in the unused most significant byte of an RGB value, but this seems
|
||||
// exceedingly rare and if it's encountered in reality they can mask
|
||||
// values going in or coming out.
|
||||
for (uint8_t i = 0; i < 4; i++)
|
||||
y[i] = gamma8(y[i]);
|
||||
return x; // Packed 32-bit return
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Fill DotStar strip with one or more cycles of hues.
|
||||
Everyone loves the rainbow swirl so much, now it's canon!
|
||||
@param first_hue Hue of first pixel, 0-65535, representing one full
|
||||
cycle of the color wheel. Each subsequent pixel will
|
||||
be offset to complete one or more cycles over the
|
||||
length of the strip.
|
||||
@param reps Number of cycles of the color wheel over the length
|
||||
of the strip. Default is 1. Negative values can be
|
||||
used to reverse the hue order.
|
||||
@param saturation Saturation (optional), 0-255 = gray to pure hue,
|
||||
default = 255.
|
||||
@param brightness Brightness/value (optional), 0-255 = off to max,
|
||||
default = 255. This is distinct and in combination
|
||||
with any configured global strip brightness.
|
||||
@param gammify If true (default), apply gamma correction to colors
|
||||
for better appearance.
|
||||
*/
|
||||
void Adafruit_DotStar::rainbow(uint16_t first_hue, int8_t reps,
|
||||
uint8_t saturation, uint8_t brightness,
|
||||
bool gammify) {
|
||||
for (uint16_t i = 0; i < numLEDs; i++) {
|
||||
uint16_t hue = first_hue + (i * reps * 65536) / numLEDs;
|
||||
uint32_t color = ColorHSV(hue, saturation, brightness);
|
||||
if (gammify)
|
||||
color = gamma32(color);
|
||||
setPixelColor(i, color);
|
||||
}
|
||||
}
|
||||
200
firmware/lib/Adafruit_DotStar/Adafruit_DotStar.h
Normal file
200
firmware/lib/Adafruit_DotStar/Adafruit_DotStar.h
Normal file
@ -0,0 +1,200 @@
|
||||
/*!
|
||||
* @file Adafruit_DotStar.h
|
||||
*
|
||||
* This file is part of the Adafruit_DotStar library.
|
||||
*
|
||||
* Adafruit_DotStar is free software: you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public License as
|
||||
* published by the Free Software Foundation, either version 3 of the
|
||||
* License, or (at your option) any later version.
|
||||
*
|
||||
* Adafruit_DotStar is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with DotStar. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _ADAFRUIT_DOT_STAR_H_
|
||||
#define _ADAFRUIT_DOT_STAR_H_
|
||||
|
||||
#include "Arduino.h"
|
||||
|
||||
#include <Adafruit_SPIDevice.h>
|
||||
|
||||
// Color-order flag for LED pixels (optional extra parameter to constructor):
|
||||
// Bits 0,1 = R index (0-2), bits 2,3 = G index, bits 4,5 = B index
|
||||
#define DOTSTAR_RGB (0 | (1 << 2) | (2 << 4)) ///< Transmit as R,G,B
|
||||
#define DOTSTAR_RBG (0 | (2 << 2) | (1 << 4)) ///< Transmit as R,B,G
|
||||
#define DOTSTAR_GRB (1 | (0 << 2) | (2 << 4)) ///< Transmit as G,R,B
|
||||
#define DOTSTAR_GBR (2 | (0 << 2) | (1 << 4)) ///< Transmit as G,B,R
|
||||
#define DOTSTAR_BRG (1 | (2 << 2) | (0 << 4)) ///< Transmit as B,R,G
|
||||
#define DOTSTAR_BGR (2 | (1 << 2) | (0 << 4)) ///< Transmit as B,G,R
|
||||
#define DOTSTAR_MONO 0 ///< Single-color strip WIP DO NOT USE, use RGB for now
|
||||
|
||||
// These two tables are declared outside the Adafruit_DotStar class
|
||||
// because some boards may require oldschool compilers that don't
|
||||
// handle the C++11 constexpr keyword.
|
||||
|
||||
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
|
||||
Copy & paste this snippet into a Python REPL to regenerate:
|
||||
import math
|
||||
for x in range(256):
|
||||
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
|
||||
if x&15 == 15: print
|
||||
*/
|
||||
static const uint8_t PROGMEM _DotStarSineTable[256] = {
|
||||
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
|
||||
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
|
||||
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
|
||||
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
|
||||
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
|
||||
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
|
||||
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
|
||||
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
|
||||
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
|
||||
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
|
||||
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
|
||||
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
|
||||
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
|
||||
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
|
||||
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
|
||||
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
|
||||
124};
|
||||
|
||||
/* Similar to above, but for an 8-bit gamma-correction table.
|
||||
Copy & paste this snippet into a Python REPL to regenerate:
|
||||
import math
|
||||
gamma=2.6
|
||||
for x in range(256):
|
||||
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
|
||||
if x&15 == 15: print
|
||||
*/
|
||||
static const uint8_t PROGMEM _DotStarGammaTable[256] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
|
||||
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
|
||||
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
||||
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
|
||||
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
|
||||
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
|
||||
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
|
||||
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
|
||||
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
|
||||
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
|
||||
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
|
||||
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
|
||||
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
|
||||
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
|
||||
255};
|
||||
|
||||
/*!
|
||||
@brief Class that stores state and functions for interacting with
|
||||
Adafruit DotStars and compatible devices.
|
||||
*/
|
||||
class Adafruit_DotStar {
|
||||
|
||||
public:
|
||||
Adafruit_DotStar(uint16_t n, uint8_t o = DOTSTAR_BRG);
|
||||
Adafruit_DotStar(uint16_t n, uint8_t d, uint8_t c, uint8_t o = DOTSTAR_BRG);
|
||||
~Adafruit_DotStar(void);
|
||||
|
||||
void begin(void);
|
||||
void show(void);
|
||||
void setPixelColor(uint16_t n, uint32_t c);
|
||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
|
||||
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
|
||||
void setBrightness(uint8_t);
|
||||
void clear();
|
||||
void updateLength(uint16_t n);
|
||||
void updatePins(void);
|
||||
void updatePins(uint8_t d, uint8_t c);
|
||||
/*!
|
||||
@brief Get a pointer directly to the DotStar data buffer in RAM.
|
||||
Pixel data is stored in a device-native format (a la the
|
||||
DOTSTAR_* constants) and is not translated here. Applications
|
||||
that access this buffer will need to be aware of the specific
|
||||
data format and handle colors appropriately.
|
||||
@return Pointer to DotStar buffer (uint8_t* array).
|
||||
@note This is for high-performance applications where calling
|
||||
setPixelColor() on every single pixel would be too slow (e.g.
|
||||
POV or light-painting projects). There is no bounds checking
|
||||
on the array, creating tremendous potential for mayhem if one
|
||||
writes past the ends of the buffer. Great power, great
|
||||
responsibility and all that.
|
||||
*/
|
||||
uint8_t *getPixels(void) const { return pixels; };
|
||||
uint8_t getBrightness(void) const;
|
||||
/*!
|
||||
@brief Return the number of pixels in an Adafruit_DotStar strip object.
|
||||
@return Pixel count (0 if not set).
|
||||
*/
|
||||
uint16_t numPixels(void) const { return numLEDs; };
|
||||
uint32_t getPixelColor(uint16_t n) const;
|
||||
/*!
|
||||
@brief An 8-bit integer sine wave function, not directly compatible
|
||||
with standard trigonometric units like radians or degrees.
|
||||
@param x Input angle, 0-255; 256 would loop back to zero, completing
|
||||
the circle (equivalent to 360 degrees or 2 pi radians).
|
||||
One can therefore use an unsigned 8-bit variable and simply
|
||||
add or subtract, allowing it to overflow/underflow and it
|
||||
still does the expected contiguous thing.
|
||||
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
|
||||
a signed int8_t, but you'll most likely want unsigned as this
|
||||
output is often used for pixel brightness in animation effects.
|
||||
*/
|
||||
static uint8_t sine8(uint8_t x) {
|
||||
return pgm_read_byte(&_DotStarSineTable[x]); // 0-255 in, 0-255 out
|
||||
}
|
||||
/*!
|
||||
@brief An 8-bit gamma-correction function for basic pixel brightness
|
||||
adjustment. Makes color transitions appear more perceptially
|
||||
correct.
|
||||
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
|
||||
@return Gamma-adjusted brightness, can then be passed to one of the
|
||||
setPixelColor() functions. This uses a fixed gamma correction
|
||||
exponent of 2.6, which seems reasonably okay for average
|
||||
DotStars in average tasks. If you need finer control you'll
|
||||
need to provide your own gamma-correction function instead.
|
||||
*/
|
||||
static uint8_t gamma8(uint8_t x) {
|
||||
return pgm_read_byte(&_DotStarGammaTable[x]); // 0-255 in, 0-255 out
|
||||
}
|
||||
/*!
|
||||
@brief Convert separate red, green and blue values into a single
|
||||
"packed" 32-bit RGB color.
|
||||
@param r Red brightness, 0 to 255.
|
||||
@param g Green brightness, 0 to 255.
|
||||
@param b Blue brightness, 0 to 255.
|
||||
@return 32-bit packed RGB value, which can then be assigned to a
|
||||
variable for later use or passed to the setPixelColor()
|
||||
function. Packed RGB format is predictable, regardless of
|
||||
LED strand color order.
|
||||
*/
|
||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
|
||||
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
|
||||
static uint32_t gamma32(uint32_t x);
|
||||
|
||||
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
|
||||
uint8_t saturation = 255, uint8_t brightness = 255,
|
||||
boolean gammify = true);
|
||||
|
||||
private:
|
||||
Adafruit_SPIDevice *spi_dev = NULL; ///< Pointer to SPI bus interface
|
||||
uint16_t numLEDs; ///< Number of pixels
|
||||
uint8_t brightness; ///< Global brightness setting
|
||||
uint8_t *pixels; ///< LED RGB values (3 bytes ea.)
|
||||
uint8_t rOffset; ///< Index of red in 3-byte pixel
|
||||
uint8_t gOffset; ///< Index of green byte
|
||||
uint8_t bOffset; ///< Index of blue byte
|
||||
};
|
||||
|
||||
#endif // _ADAFRUIT_DOT_STAR_H_
|
||||
794
firmware/lib/Adafruit_DotStar/COPYING
Normal file
794
firmware/lib/Adafruit_DotStar/COPYING
Normal file
@ -0,0 +1,794 @@
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
|
||||
|
||||
LGPL ADDENDUM:
|
||||
|
||||
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
|
||||
This version of the GNU Lesser General Public License incorporates
|
||||
the terms and conditions of version 3 of the GNU General Public
|
||||
License, supplemented by the additional permissions listed below.
|
||||
|
||||
0. Additional Definitions.
|
||||
|
||||
As used herein, "this License" refers to version 3 of the GNU Lesser
|
||||
General Public License, and the "GNU GPL" refers to version 3 of the GNU
|
||||
General Public License.
|
||||
|
||||
"The Library" refers to a covered work governed by this License,
|
||||
other than an Application or a Combined Work as defined below.
|
||||
|
||||
An "Application" is any work that makes use of an interface provided
|
||||
by the Library, but which is not otherwise based on the Library.
|
||||
Defining a subclass of a class defined by the Library is deemed a mode
|
||||
of using an interface provided by the Library.
|
||||
|
||||
A "Combined Work" is a work produced by combining or linking an
|
||||
Application with the Library. The particular version of the Library
|
||||
with which the Combined Work was made is also called the "Linked
|
||||
Version".
|
||||
|
||||
The "Minimal Corresponding Source" for a Combined Work means the
|
||||
Corresponding Source for the Combined Work, excluding any source code
|
||||
for portions of the Combined Work that, considered in isolation, are
|
||||
based on the Application, and not on the Linked Version.
|
||||
|
||||
The "Corresponding Application Code" for a Combined Work means the
|
||||
object code and/or source code for the Application, including any data
|
||||
and utility programs needed for reproducing the Combined Work from the
|
||||
Application, but excluding the System Libraries of the Combined Work.
|
||||
|
||||
1. Exception to Section 3 of the GNU GPL.
|
||||
|
||||
You may convey a covered work under sections 3 and 4 of this License
|
||||
without being bound by section 3 of the GNU GPL.
|
||||
|
||||
2. Conveying Modified Versions.
|
||||
|
||||
If you modify a copy of the Library, and, in your modifications, a
|
||||
facility refers to a function or data to be supplied by an Application
|
||||
that uses the facility (other than as an argument passed when the
|
||||
facility is invoked), then you may convey a copy of the modified
|
||||
version:
|
||||
|
||||
a) under this License, provided that you make a good faith effort to
|
||||
ensure that, in the event an Application does not supply the
|
||||
function or data, the facility still operates, and performs
|
||||
whatever part of its purpose remains meaningful, or
|
||||
|
||||
b) under the GNU GPL, with none of the additional permissions of
|
||||
this License applicable to that copy.
|
||||
|
||||
3. Object Code Incorporating Material from Library Header Files.
|
||||
|
||||
The object code form of an Application may incorporate material from
|
||||
a header file that is part of the Library. You may convey such object
|
||||
code under terms of your choice, provided that, if the incorporated
|
||||
material is not limited to numerical parameters, data structure
|
||||
layouts and accessors, or small macros, inline functions and templates
|
||||
(ten or fewer lines in length), you do both of the following:
|
||||
|
||||
a) Give prominent notice with each copy of the object code that the
|
||||
Library is used in it and that the Library and its use are
|
||||
covered by this License.
|
||||
|
||||
b) Accompany the object code with a copy of the GNU GPL and this license
|
||||
document.
|
||||
|
||||
4. Combined Works.
|
||||
|
||||
You may convey a Combined Work under terms of your choice that,
|
||||
taken together, effectively do not restrict modification of the
|
||||
portions of the Library contained in the Combined Work and reverse
|
||||
engineering for debugging such modifications, if you also do each of
|
||||
the following:
|
||||
|
||||
a) Give prominent notice with each copy of the Combined Work that
|
||||
the Library is used in it and that the Library and its use are
|
||||
covered by this License.
|
||||
|
||||
b) Accompany the Combined Work with a copy of the GNU GPL and this license
|
||||
document.
|
||||
|
||||
c) For a Combined Work that displays copyright notices during
|
||||
execution, include the copyright notice for the Library among
|
||||
these notices, as well as a reference directing the user to the
|
||||
copies of the GNU GPL and this license document.
|
||||
|
||||
d) Do one of the following:
|
||||
|
||||
0) Convey the Minimal Corresponding Source under the terms of this
|
||||
License, and the Corresponding Application Code in a form
|
||||
suitable for, and under terms that permit, the user to
|
||||
recombine or relink the Application with a modified version of
|
||||
the Linked Version to produce a modified Combined Work, in the
|
||||
manner specified by section 6 of the GNU GPL for conveying
|
||||
Corresponding Source.
|
||||
|
||||
1) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (a) uses at run time
|
||||
a copy of the Library already present on the user's computer
|
||||
system, and (b) will operate properly with a modified version
|
||||
of the Library that is interface-compatible with the Linked
|
||||
Version.
|
||||
|
||||
e) Provide Installation Information, but only if you would otherwise
|
||||
be required to provide such information under section 6 of the
|
||||
GNU GPL, and only to the extent that such information is
|
||||
necessary to install and execute a modified version of the
|
||||
Combined Work produced by recombining or relinking the
|
||||
Application with a modified version of the Linked Version. (If
|
||||
you use option 4d0, the Installation Information must accompany
|
||||
the Minimal Corresponding Source and Corresponding Application
|
||||
Code. If you use option 4d1, you must provide the Installation
|
||||
Information in the manner specified by section 6 of the GNU GPL
|
||||
for conveying Corresponding Source.)
|
||||
|
||||
5. Combined Libraries.
|
||||
|
||||
You may place library facilities that are a work based on the
|
||||
Library side by side in a single library together with other library
|
||||
facilities that are not Applications and are not covered by this
|
||||
License, and convey such a combined library under terms of your
|
||||
choice, if you do both of the following:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work based
|
||||
on the Library, uncombined with any other library facilities,
|
||||
conveyed under the terms of this License.
|
||||
|
||||
b) Give prominent notice with the combined library that part of it
|
||||
is a work based on the Library, and explaining where to find the
|
||||
accompanying uncombined form of the same work.
|
||||
|
||||
6. Revised Versions of the GNU Lesser General Public License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions
|
||||
of the GNU Lesser General Public License from time to time. Such new
|
||||
versions will be similar in spirit to the present version, but may
|
||||
differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Library as you received it specifies that a certain numbered version
|
||||
of the GNU Lesser General Public License "or any later version"
|
||||
applies to it, you have the option of following the terms and
|
||||
conditions either of that published version or of any later version
|
||||
published by the Free Software Foundation. If the Library as you
|
||||
received it does not specify a version number of the GNU Lesser
|
||||
General Public License, you may choose any version of the GNU Lesser
|
||||
General Public License ever published by the Free Software Foundation.
|
||||
|
||||
If the Library as you received it specifies that a proxy can decide
|
||||
whether future versions of the GNU Lesser General Public License shall
|
||||
apply, that proxy's public statement of acceptance of any version is
|
||||
permanent authorization for you to choose that version for the
|
||||
Library.
|
||||
3
firmware/lib/Adafruit_DotStar/README.md
Normal file
3
firmware/lib/Adafruit_DotStar/README.md
Normal file
@ -0,0 +1,3 @@
|
||||
# Adafruit DotStar [](https://github.com/adafruit/Adafruit_DotStar/actions)
|
||||
|
||||
Arduino library for controlling two-wire-based LED pixels and strips such as Adafruit DotStar LEDs and other APA102-compatible devices.
|
||||
127
firmware/lib/Adafruit_DotStar/code-of-conduct.md
Normal file
127
firmware/lib/Adafruit_DotStar/code-of-conduct.md
Normal file
@ -0,0 +1,127 @@
|
||||
# Adafruit Community Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
In the interest of fostering an open and welcoming environment, we as
|
||||
contributors and leaders pledge to making participation in our project and
|
||||
our community a harassment-free experience for everyone, regardless of age, body
|
||||
size, disability, ethnicity, gender identity and expression, level or type of
|
||||
experience, education, socio-economic status, nationality, personal appearance,
|
||||
race, religion, or sexual identity and orientation.
|
||||
|
||||
## Our Standards
|
||||
|
||||
We are committed to providing a friendly, safe and welcoming environment for
|
||||
all.
|
||||
|
||||
Examples of behavior that contributes to creating a positive environment
|
||||
include:
|
||||
|
||||
* Be kind and courteous to others
|
||||
* Using welcoming and inclusive language
|
||||
* Being respectful of differing viewpoints and experiences
|
||||
* Collaborating with other community members
|
||||
* Gracefully accepting constructive criticism
|
||||
* Focusing on what is best for the community
|
||||
* Showing empathy towards other community members
|
||||
|
||||
Examples of unacceptable behavior by participants include:
|
||||
|
||||
* The use of sexualized language or imagery and sexual attention or advances
|
||||
* The use of inappropriate images, including in a community member's avatar
|
||||
* The use of inappropriate language, including in a community member's nickname
|
||||
* Any spamming, flaming, baiting or other attention-stealing behavior
|
||||
* Excessive or unwelcome helping; answering outside the scope of the question
|
||||
asked
|
||||
* Trolling, insulting/derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or electronic
|
||||
address, without explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate
|
||||
|
||||
The goal of the standards and moderation guidelines outlined here is to build
|
||||
and maintain a respectful community. We ask that you don’t just aim to be
|
||||
"technically unimpeachable", but rather try to be your best self.
|
||||
|
||||
We value many things beyond technical expertise, including collaboration and
|
||||
supporting others within our community. Providing a positive experience for
|
||||
other community members can have a much more significant impact than simply
|
||||
providing the correct answer.
|
||||
|
||||
## Our Responsibilities
|
||||
|
||||
Project leaders are responsible for clarifying the standards of acceptable
|
||||
behavior and are expected to take appropriate and fair corrective action in
|
||||
response to any instances of unacceptable behavior.
|
||||
|
||||
Project leaders have the right and responsibility to remove, edit, or
|
||||
reject messages, comments, commits, code, issues, and other contributions
|
||||
that are not aligned to this Code of Conduct, or to ban temporarily or
|
||||
permanently any community member for other behaviors that they deem
|
||||
inappropriate, threatening, offensive, or harmful.
|
||||
|
||||
## Moderation
|
||||
|
||||
Instances of behaviors that violate the Adafruit Community Code of Conduct
|
||||
may be reported by any member of the community. Community members are
|
||||
encouraged to report these situations, including situations they witness
|
||||
involving other community members.
|
||||
|
||||
You may report in the following ways:
|
||||
|
||||
In any situation, you may send an email to <support@adafruit.com>.
|
||||
|
||||
On the Adafruit Discord, you may send an open message from any channel
|
||||
to all Community Helpers by tagging @community helpers. You may also send an
|
||||
open message from any channel, or a direct message to @kattni#1507,
|
||||
@tannewt#4653, @Dan Halbert#1614, @cater#2442, @sommersoft#0222, or
|
||||
@Andon#8175.
|
||||
|
||||
Email and direct message reports will be kept confidential.
|
||||
|
||||
In situations on Discord where the issue is particularly egregious, possibly
|
||||
illegal, requires immediate action, or violates the Discord terms of service,
|
||||
you should also report the message directly to Discord.
|
||||
|
||||
These are the steps for upholding our community’s standards of conduct.
|
||||
|
||||
1. Any member of the community may report any situation that violates the
|
||||
Adafruit Community Code of Conduct. All reports will be reviewed and
|
||||
investigated.
|
||||
2. If the behavior is an egregious violation, the community member who
|
||||
committed the violation may be banned immediately, without warning.
|
||||
3. Otherwise, moderators will first respond to such behavior with a warning.
|
||||
4. Moderators follow a soft "three strikes" policy - the community member may
|
||||
be given another chance, if they are receptive to the warning and change their
|
||||
behavior.
|
||||
5. If the community member is unreceptive or unreasonable when warned by a
|
||||
moderator, or the warning goes unheeded, they may be banned for a first or
|
||||
second offense. Repeated offenses will result in the community member being
|
||||
banned.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct and the enforcement policies listed above apply to all
|
||||
Adafruit Community venues. This includes but is not limited to any community
|
||||
spaces (both public and private), the entire Adafruit Discord server, and
|
||||
Adafruit GitHub repositories. Examples of Adafruit Community spaces include
|
||||
but are not limited to meet-ups, audio chats on the Adafruit Discord, or
|
||||
interaction at a conference.
|
||||
|
||||
This Code of Conduct applies both within project spaces and in public spaces
|
||||
when an individual is representing the project or its community. As a community
|
||||
member, you are representing our community, and are expected to behave
|
||||
accordingly.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 1.4, available at
|
||||
<https://www.contributor-covenant.org/version/1/4/code-of-conduct.html>,
|
||||
and the [Rust Code of Conduct](https://www.rust-lang.org/en-US/conduct.html).
|
||||
|
||||
For other projects adopting the Adafruit Community Code of
|
||||
Conduct, please contact the maintainers of those projects for enforcement.
|
||||
If you wish to use this code of conduct for your own project, consider
|
||||
explicitly mentioning your moderation policy or making a copy with your
|
||||
own moderation policy so as to avoid confusion.
|
||||
@ -0,0 +1,49 @@
|
||||
// An example demonstrating how to control the Adafruit Dot Star RGB LED
|
||||
// included on board the ItsyBitsy M4 board.
|
||||
|
||||
#include <Adafruit_DotStar.h>
|
||||
|
||||
// There is only one pixel on the board
|
||||
#define NUMPIXELS 1
|
||||
|
||||
//Use these pin definitions for the ItsyBitsy M4
|
||||
#define DATAPIN 8
|
||||
#define CLOCKPIN 6
|
||||
|
||||
Adafruit_DotStar strip(NUMPIXELS, DATAPIN, CLOCKPIN, DOTSTAR_BRG);
|
||||
|
||||
void setup() {
|
||||
strip.begin(); // Initialize pins for output
|
||||
strip.setBrightness(80);
|
||||
strip.show(); // Turn all LEDs off ASAP
|
||||
}
|
||||
|
||||
void loop() {
|
||||
rainbow(10); // Flowing rainbow cycle along the whole strip
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Rainbow cycle along whole strip. Pass delay time (in ms) between frames.
|
||||
void rainbow(int wait) {
|
||||
// Hue of first pixel runs 5 complete loops through the color wheel.
|
||||
// Color wheel has a range of 65536 but it's OK if we roll over, so
|
||||
// just count from 0 to 5*65536. Adding 256 to firstPixelHue each time
|
||||
// means we'll make 5*65536/256 = 1280 passes through this outer loop:
|
||||
for(long firstPixelHue = 0; firstPixelHue < 5*65536; firstPixelHue += 256) {
|
||||
for(int i=0; i<strip.numPixels(); i++) { // For each pixel in strip...
|
||||
// Offset pixel hue by an amount to make one full revolution of the
|
||||
// color wheel (range of 65536) along the length of the strip
|
||||
// (strip.numPixels() steps):
|
||||
int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
|
||||
// strip.ColorHSV() can take 1 or 3 arguments: a hue (0 to 65535) or
|
||||
// optionally add saturation and value (brightness) (each 0 to 255).
|
||||
// Here we're using just the single-argument hue variant. The result
|
||||
// is passed through strip.gamma32() to provide 'truer' colors
|
||||
// before assigning to each pixel:
|
||||
strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
|
||||
}
|
||||
strip.show(); // Update strip with new contents
|
||||
delay(wait); // Pause for a moment
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,57 @@
|
||||
// Simple strand test for Adafruit Dot Star RGB LED strip.
|
||||
// This is a basic diagnostic tool, NOT a graphics demo...helps confirm
|
||||
// correct wiring and tests each pixel's ability to display red, green
|
||||
// and blue and to forward data down the line. By limiting the number
|
||||
// and color of LEDs, it's reasonably safe to power a couple meters off
|
||||
// the Arduino's 5V pin. DON'T try that with other code!
|
||||
|
||||
#include <Adafruit_DotStar.h>
|
||||
// Because conditional #includes don't work w/Arduino sketches...
|
||||
#include <SPI.h> // COMMENT OUT THIS LINE FOR GEMMA OR TRINKET
|
||||
//#include <avr/power.h> // ENABLE THIS LINE FOR GEMMA OR TRINKET
|
||||
|
||||
#define NUMPIXELS 30 // Number of LEDs in strip
|
||||
|
||||
// Here's how to control the LEDs from any two pins:
|
||||
#define DATAPIN 4
|
||||
#define CLOCKPIN 5
|
||||
Adafruit_DotStar strip(NUMPIXELS, DATAPIN, CLOCKPIN, DOTSTAR_BRG);
|
||||
// The last parameter is optional -- this is the color data order of the
|
||||
// DotStar strip, which has changed over time in different production runs.
|
||||
// Your code just uses R,G,B colors, the library then reassigns as needed.
|
||||
// Default is DOTSTAR_BRG, so change this if you have an earlier strip.
|
||||
|
||||
// Hardware SPI is a little faster, but must be wired to specific pins
|
||||
// (Arduino Uno = pin 11 for data, 13 for clock, other boards are different).
|
||||
//Adafruit_DotStar strip(NUMPIXELS, DOTSTAR_BRG);
|
||||
|
||||
void setup() {
|
||||
|
||||
#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000L)
|
||||
clock_prescale_set(clock_div_1); // Enable 16 MHz on Trinket
|
||||
#endif
|
||||
|
||||
strip.begin(); // Initialize pins for output
|
||||
strip.show(); // Turn all LEDs off ASAP
|
||||
}
|
||||
|
||||
// Runs 10 LEDs at a time along strip, cycling through red, green and blue.
|
||||
// This requires about 200 mA for all the 'on' pixels + 1 mA per 'off' pixel.
|
||||
|
||||
int head = 0, tail = -10; // Index of first 'on' and 'off' pixels
|
||||
uint32_t color = 0xFF0000; // 'On' color (starts red)
|
||||
|
||||
void loop() {
|
||||
|
||||
strip.setPixelColor(head, color); // 'On' pixel at head
|
||||
strip.setPixelColor(tail, 0); // 'Off' pixel at tail
|
||||
strip.show(); // Refresh strip
|
||||
delay(20); // Pause 20 milliseconds (~50 FPS)
|
||||
|
||||
if(++head >= NUMPIXELS) { // Increment head index. Off end of strip?
|
||||
head = 0; // Yes, reset head index to start
|
||||
if((color >>= 8) == 0) // Next color (R->G->B) ... past blue now?
|
||||
color = 0xFF0000; // Yes, reset to red
|
||||
}
|
||||
if(++tail >= NUMPIXELS) tail = 0; // Increment, reset tail index
|
||||
}
|
||||
42
firmware/lib/Adafruit_DotStar/keywords.txt
Normal file
42
firmware/lib/Adafruit_DotStar/keywords.txt
Normal file
@ -0,0 +1,42 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For Adafruit_DotStar
|
||||
#######################################
|
||||
# Class
|
||||
#######################################
|
||||
|
||||
Adafruit_DotStar KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions
|
||||
#######################################
|
||||
|
||||
begin KEYWORD2
|
||||
show KEYWORD2
|
||||
setPixelColor KEYWORD2
|
||||
fill KEYWORD2
|
||||
setBrightness KEYWORD2
|
||||
clear KEYWORD2
|
||||
updateLength KEYWORD2
|
||||
updatePins KEYWORD2
|
||||
getPixels KEYWORD2
|
||||
getBrightness KEYWORD2
|
||||
numPixels KEYWORD2
|
||||
getPixelColor KEYWORD2
|
||||
sine8 KEYWORD2
|
||||
gamma8 KEYWORD2
|
||||
Color KEYWORD2
|
||||
ColorHSV KEYWORD2
|
||||
gamma32 KEYWORD2
|
||||
|
||||
#######################################
|
||||
# Constants
|
||||
#######################################
|
||||
|
||||
DOTSTAR_RGB LITERAL1
|
||||
DOTSTAR_RBG LITERAL1
|
||||
DOTSTAR_GRB LITERAL1
|
||||
DOTSTAR_GBR LITERAL1
|
||||
DOTSTAR_BRG LITERAL1
|
||||
DOTSTAR_BGR LITERAL1
|
||||
DOTSTAR_MONO LITERAL1
|
||||
|
||||
10
firmware/lib/Adafruit_DotStar/library.properties
Normal file
10
firmware/lib/Adafruit_DotStar/library.properties
Normal file
@ -0,0 +1,10 @@
|
||||
name=Adafruit DotStar
|
||||
version=1.2.1
|
||||
author=Adafruit
|
||||
maintainer=Adafruit <info@adafruit.com>
|
||||
sentence=Adafruit DotStar LED Library
|
||||
paragraph=Adafruit DotStar LED Library
|
||||
category=Display
|
||||
url=https://github.com/adafruit/Adafruit_DotStar
|
||||
architectures=*
|
||||
depends=Adafruit BusIO
|
||||
674
firmware/lib/Adafruit_DotStar/license.txt
Normal file
674
firmware/lib/Adafruit_DotStar/license.txt
Normal file
@ -0,0 +1,674 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
||||
@ -9,40 +9,39 @@
|
||||
* -- -------------------- ------ ------ --------- ------- -- --
|
||||
* --#####--------------------#####--------#####--------#####---------------------------------------------
|
||||
* -- -------------------- -------- -------- ---------------------------------------------
|
||||
* --######--------------##---#####---------------------#####---------- CMtec CMDR Keyboard --------------
|
||||
* --######--------------##---#####---------------------#####---------- CMtec CMDR Keyboard 42 -----------
|
||||
* --##################### ---#####---------------------#####---------------------------------------------
|
||||
* ---################### ----#####---------------------#####---------------------------------------------
|
||||
* --- ----- --------------------- ---------------------------------------------
|
||||
* -------------------------------------------------------------------------------------------------------
|
||||
* =======================================================================================================
|
||||
*
|
||||
* Copyright 2020 Christoffer Martinsson <cm@cmtec.se>
|
||||
* Copyright 2022 Christoffer Martinsson <cm@cmtec.se>
|
||||
*
|
||||
* CMtec CMDR Keyboard can be redistributed and/or modified under the terms of the GNU General
|
||||
* CMtec CMDR Keyboard 42 can be redistributed and/or modified under the terms of the GNU General
|
||||
* Public License (Version 2), as published by the Free Software Foundation.
|
||||
* A copy of the license can be found online at www.gnu.o urg/licenses.
|
||||
*
|
||||
* CMtec CMDR Keyboard is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
* CMtec CMDR Keyboard 42 is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
||||
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
||||
*
|
||||
* Keyboard/Mouse/Joystick based on standard teensy "Keypad" library for button scanning, standard teensy
|
||||
* "usb_keyboard" library, standard "usb_mouse" and custom "usb_joystick" library for sending usb data.
|
||||
* Keyboard/Mouse based on standard teensy "Keypad" library for button scanning, standard teensy
|
||||
* "usb_keyboard" library, standard "usb_mouse" for sending usb data.
|
||||
*
|
||||
* Features:
|
||||
*
|
||||
* 56 keys Split keyboard/keypads (28 Left + 28 Right)
|
||||
* Two function buttons with total of four key-layer support (Primary + 3fn layers)
|
||||
* 42 keys "Split" keyboard.
|
||||
* Two function buttons with total of three key-layer support (Primary + 2fn layers).
|
||||
* Mouse wheel up, wheel down, back button, forward button and middle button support
|
||||
* Dedicated PTT button with four channel support
|
||||
*
|
||||
* 2x joysticks each having 2 axis, 4 buttons
|
||||
*/
|
||||
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <EEPROM.h>
|
||||
#include <Keypad.h>
|
||||
#include <Wire.h>
|
||||
#include <SPI.h>
|
||||
#include <Adafruit_DotStar.h>
|
||||
|
||||
#define USB_LED_NUM_LOCK 0
|
||||
#define USB_LED_CAPS_LOCK 1
|
||||
@ -50,371 +49,425 @@
|
||||
|
||||
#define KEY_OFFSET 0xAA00
|
||||
|
||||
#define KEY_MWU 53 + KEY_OFFSET
|
||||
#define KEY_MWD 54 + KEY_OFFSET
|
||||
#define KEY_M1 55 + KEY_OFFSET
|
||||
#define KEY_M2 56 + KEY_OFFSET
|
||||
#define KEY_M3 57 + KEY_OFFSET
|
||||
#define KEY_MB 58 + KEY_OFFSET
|
||||
#define KEY_MF 59 + KEY_OFFSET
|
||||
#define KEY_MWU 1 + KEY_OFFSET
|
||||
#define KEY_MWD 2 + KEY_OFFSET
|
||||
#define KEY_M1 3 + KEY_OFFSET
|
||||
#define KEY_M2 4 + KEY_OFFSET
|
||||
#define KEY_M3 5 + KEY_OFFSET
|
||||
#define KEY_MB 6 + KEY_OFFSET
|
||||
#define KEY_MF 7 + KEY_OFFSET
|
||||
#define KEY_MU 8 + KEY_OFFSET
|
||||
#define KEY_ML 9 + KEY_OFFSET
|
||||
#define KEY_MD 10 + KEY_OFFSET
|
||||
#define KEY_MR 11 + KEY_OFFSET
|
||||
|
||||
#define KEY_FN1 60 + KEY_OFFSET
|
||||
#define KEY_FN2 61 + KEY_OFFSET
|
||||
#define KEY_TAP1 62 + KEY_OFFSET
|
||||
#define KEY_TAP2 63 + KEY_OFFSET
|
||||
#define KEY_TAP3 64 + KEY_OFFSET
|
||||
#define KEY_TAP4 65 + KEY_OFFSET
|
||||
#define KEY_TAP5 66 + KEY_OFFSET
|
||||
#define KEY_TAP6 67 + KEY_OFFSET
|
||||
#define KEY_TAP7 68 + KEY_OFFSET
|
||||
#define KEY_FN1 12 + KEY_OFFSET
|
||||
#define KEY_FN2 13 + KEY_OFFSET
|
||||
|
||||
#define NBR_OF_FN 3
|
||||
|
||||
// Start of key edit -----------------------------------------------------------
|
||||
|
||||
#define NBR_OF_TAP 7
|
||||
|
||||
byte kp_buttons[48][3];
|
||||
#define KEY_TAP1 20 + KEY_OFFSET
|
||||
#define KEY_TAP2 21 + KEY_OFFSET
|
||||
#define KEY_TAP3 22 + KEY_OFFSET
|
||||
#define KEY_TAP4 23 + KEY_OFFSET
|
||||
#define KEY_TAP5 24 + KEY_OFFSET
|
||||
#define KEY_TAP6 25 + KEY_OFFSET
|
||||
#define KEY_TAP7 26 + KEY_OFFSET
|
||||
|
||||
// Keypad button mapping
|
||||
const uint16_t kp_keys[48][NBR_OF_FN] = {
|
||||
// Fn 0 Fn 1 Fn 2 Fn 3 Fn 4
|
||||
// Standard keys Sec Standard keys F and Special keys Sec F and Special keys Special keys
|
||||
// Fn 0 Fn 1 Fn 2
|
||||
// Row 1
|
||||
{KEY_TAP1, KEY_TAP1, KEY_TAP1},
|
||||
{KEY_Q, KEY_F1, KEY_F1},
|
||||
{KEY_W, KEY_F2, KEY_F2},
|
||||
{KEY_E, KEY_F3, KEY_F3},
|
||||
{KEY_R, KEY_F4, KEY_F4},
|
||||
{KEY_T, KEY_F5, KEY_F5},
|
||||
{KEY_Y, KEY_F6, KEY_FN},
|
||||
{KEY_U, KEY_F7, KEY_PS},
|
||||
{KEY_I, KEY_F8, KEY_PS},
|
||||
{KEY_O, KEY_F9, KEY_PS},
|
||||
{KEY_P, KEY_F10, KEY_PS},
|
||||
{'å', KEY_F11, NO_KEY},
|
||||
{KEY_Q, KEY_F1, KEY_F12},
|
||||
{KEY_W, KEY_F2, KEY_F13},
|
||||
{KEY_E, KEY_F3, KEY_F14},
|
||||
{KEY_R, KEY_F4, KEY_F15},
|
||||
{KEY_T, KEY_F5, KEY_F16},
|
||||
{KEY_Y, KEY_F6, NO_KEY},
|
||||
{KEY_U, KEY_F7, NO_KEY},
|
||||
{KEY_I, KEY_F8, NO_KEY},
|
||||
{KEY_O, KEY_F9, NO_KEY},
|
||||
{KEY_P, KEY_F10, NO_KEY},
|
||||
{'å', KEY_F11, KEY_CAPS_LOCK},
|
||||
// Row 2
|
||||
{KEY_TAP2, KEY_TAP2, KEY_TAP2},
|
||||
{KEY_A, KEY_1, KEY_MEDIA_PLAY_PAUSE},
|
||||
{KEY_S, KEY_2, KEY_MEDIA_NEXT_TRACK},
|
||||
{KEY_D, KEY_3, NO_KEY},
|
||||
{KEY_A, KEY_1, KEY_MEDIA_PREV_TRACK},
|
||||
{KEY_S, KEY_2, KEY_MEDIA_PLAY_PAUSE},
|
||||
{KEY_D, KEY_3, KEY_MEDIA_NEXT_TRACK},
|
||||
{KEY_F, KEY_4, NO_KEY},
|
||||
{KEY_G, KEY_5, NO_KEY},
|
||||
{KEY_H, KEY_6, KEY_LEFT_SHIFT},
|
||||
{KEY_J, KEY_7, NO_KEY},
|
||||
{KEY_K, KEY_8, KEY_M3},
|
||||
{KEY_L, KEY_9, NO_KEY},
|
||||
{KEY_H, KEY_6, KEY_LEFT_ARROW},
|
||||
{KEY_J, KEY_7, KEY_DOWN_ARROW},
|
||||
{KEY_K, KEY_8, KEY_UP_ARROW},
|
||||
{KEY_L, KEY_9, KEY_RIGHT_ARROW},
|
||||
{'ö', KEY_0, NO_KEY},
|
||||
{'ä', KEY_EQUAL, NO_KEY},
|
||||
// Row 3
|
||||
{KEY_TAP3, KEY_TAP3, KEY_TAP3},
|
||||
{KEY_Z, '§', KEY_FN1},
|
||||
{KEY_X, NO_KEY, KEY_LEFT_ALT},
|
||||
{KEY_C, NO_KEY, KEY_SPACE},
|
||||
{KEY_V, '<', KEY_F6},
|
||||
{KEY_B, NO_KEY, KEY_F7},
|
||||
{KEY_N, NO_KEY, KEY_F8},
|
||||
{KEY_M, KEY_BACKSLASH, KEY_F9},
|
||||
{KEY_COMMA, KEY_RIGHT_BRACE, KEY_F10},
|
||||
{KEY_PERIOD, KEY_MINUS, NO_KEY},
|
||||
{KEY_SLASH, NO_KEY, NO_KEY},
|
||||
{KEY_Z, '§', NO_KEY},
|
||||
{KEY_X, NO_KEY, NO_KEY},
|
||||
{KEY_C, NO_KEY, NO_KEY},
|
||||
{KEY_V, '<', NO_KEY},
|
||||
{KEY_B, NO_KEY, NO_KEY},
|
||||
{KEY_N, NO_KEY, KEY_HOME},
|
||||
{KEY_M, KEY_BACKSLASH, KEY_PAGE_DOWN},
|
||||
{KEY_COMMA, KEY_RIGHT_BRACE, KEY_PAGE_UP},
|
||||
{KEY_PERIOD, KEY_MINUS, KEY_END},
|
||||
{KEY_SLASH, NO_KEY, KEY_INSERT},
|
||||
{KEY_TAP4, KEY_TAP4, KEY_TAP4},
|
||||
{NO_KEY, NO_KEY, NO_KEY},
|
||||
{NO_KEY, NO_KEY, NO_KEY},
|
||||
{NO_KEY, NO_KEY, NO_KEY},
|
||||
// Row 4
|
||||
{NO_KEY, NO_KEY, NO_KEY}, // N/A
|
||||
{NO_KEY, NO_KEY, NO_KEY}, // N/A
|
||||
{NO_KEY, NO_KEY, NO_KEY}, // N/A
|
||||
{KEY_TAP5, KEY_TAP5, KEY_TAP5},
|
||||
{KEY_LEFT_ALT, KEY_LEFT_ALT, KEY_LEFT_ALT},
|
||||
{KEY_TAP6, KEY_TAP6, KEY_TAP6},
|
||||
{KEY_TAP7, KEY_TAP7, KEY_TAP7},
|
||||
{KEY_RIGHT_ALT, KEY_RIGHT_ALT, KEY_RIGHT_ALT},
|
||||
{KEY_LEFT_GUI, KEY_LEFT_GUI, KEY_LEFT_GUI},
|
||||
{NO_KEY, NO_KEY, NO_KEY},
|
||||
{NO_KEY, NO_KEY, NO_KEY},
|
||||
{NO_KEY, NO_KEY, NO_KEY}
|
||||
{NO_KEY, NO_KEY, NO_KEY}, // N/A
|
||||
{NO_KEY, NO_KEY, NO_KEY}, // N/A
|
||||
{NO_KEY, NO_KEY, NO_KEY} // N/A
|
||||
};
|
||||
|
||||
struct Fn_tap{
|
||||
// Keypad tap key mapping
|
||||
const uint16_t tap_keys[NBR_OF_TAP][3] = {
|
||||
// Trigger, Tap, Hold
|
||||
{KEY_TAP1, KEY_TAB, KEY_FN2},
|
||||
{KEY_TAP2, KEY_ESC, KEY_LEFT_CTRL},
|
||||
{KEY_TAP3, KEY_DELETE, KEY_LEFT_SHIFT},
|
||||
{KEY_TAP4, KEY_ENTER, KEY_RIGHT_SHIFT},
|
||||
{KEY_TAP5, KEY_M1, KEY_M2},
|
||||
{KEY_TAP6, KEY_BACKSPACE, KEY_FN1},
|
||||
{KEY_TAP7, KEY_SPACE, KEY_FN1}};
|
||||
|
||||
// End of key edit -----------------------------------------------------------
|
||||
|
||||
struct Tap
|
||||
{
|
||||
int state = 0;
|
||||
bool timeout_enable = false;
|
||||
bool release_enable = false;
|
||||
unsigned long timeout_timestamp = 0;
|
||||
unsigned long release_timestamp = 0;
|
||||
unsigned long timeout_time = 150;
|
||||
uint16_t trigger_keycode = NO_KEY;
|
||||
uint16_t target_keycode = NO_KEY;
|
||||
int kp_fn_mode = 0;
|
||||
bool fn_fast_switch = true;
|
||||
};
|
||||
|
||||
int fn_kp_key_found = 0;
|
||||
int kp_fn_mode = 0;
|
||||
Fn_tap fn_tap[NBR_OF_TAP];
|
||||
Tap tap[NBR_OF_TAP];
|
||||
|
||||
int mouse_wheel = 0;
|
||||
|
||||
const int POWER_LED = 13;
|
||||
|
||||
#define DATAPIN 22
|
||||
#define CLOCKPIN 23
|
||||
#define NUMPIXELS 2
|
||||
Adafruit_DotStar strip(NUMPIXELS, DATAPIN, CLOCKPIN, DOTSTAR_BGR);
|
||||
|
||||
unsigned long current_timestamp = 0;
|
||||
unsigned long button_timestamp = 0;
|
||||
unsigned long mouse_wheel_timestamp = 0;
|
||||
unsigned long indicator_timestamp = 0;
|
||||
|
||||
const byte KP_ROWS = 5;
|
||||
const byte KP_COLS = 6;
|
||||
byte kp_buttons[48][3];
|
||||
|
||||
byte kp_rowPins[KP_ROWS] = {2,3,4,5,6};
|
||||
byte kp_colPins[KP_COLS] = {9,10,11,12,14,15};
|
||||
const byte KP_ROWS = 4;
|
||||
const byte KP_COLS = 12;
|
||||
|
||||
byte kp_rowPins[KP_ROWS] = {1, 2, 3, 4};
|
||||
byte kp_colPins[KP_COLS] = {12, 11, 10, 9, 8, 7, 26, 25, 24, 23, 22, 21};
|
||||
|
||||
Keypad kp_keypad = Keypad(makeKeymap(kp_keys), kp_rowPins, kp_colPins, KP_ROWS, KP_COLS);
|
||||
|
||||
int mouse_x = 0;
|
||||
int mouse_y = 0;
|
||||
|
||||
void update_key(uint16_t keycode, uint8_t kstate) {
|
||||
void update_key(uint16_t keycode, uint8_t kstate)
|
||||
{
|
||||
// Mouse buttons
|
||||
if (keycode >= KEY_M1 && keycode <= KEY_MF) {
|
||||
if (kstate == RELEASED) {
|
||||
Mouse.release(1 << (((keycode-KEY_OFFSET)-(KEY_M1-KEY_OFFSET))));
|
||||
} else if (kstate == PRESSED) {
|
||||
Mouse.press(1 << (((keycode-KEY_OFFSET)-(KEY_M1-KEY_OFFSET))));
|
||||
if (keycode >= KEY_M1 && keycode <= KEY_MF)
|
||||
{
|
||||
if (kstate == RELEASED)
|
||||
{
|
||||
Mouse.release(1 << (((keycode - KEY_OFFSET) - (KEY_M1 - KEY_OFFSET))));
|
||||
}
|
||||
else if (kstate == PRESSED)
|
||||
{
|
||||
Mouse.press(1 << (((keycode - KEY_OFFSET) - (KEY_M1 - KEY_OFFSET))));
|
||||
}
|
||||
}
|
||||
|
||||
// Mouse wheel
|
||||
else if ((keycode == KEY_MWU || keycode == KEY_MWD)) {
|
||||
if (kstate == RELEASED) {
|
||||
else if ((keycode == KEY_MWU || keycode == KEY_MWD))
|
||||
{
|
||||
if (kstate == RELEASED)
|
||||
{
|
||||
mouse_wheel = 0;
|
||||
} else if (kstate == PRESSED || kstate == HOLD) {
|
||||
if (keycode == KEY_MWU) {
|
||||
}
|
||||
else if (kstate == PRESSED || kstate == HOLD)
|
||||
{
|
||||
if (keycode == KEY_MWU)
|
||||
{
|
||||
mouse_wheel = 1;
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
mouse_wheel = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Normal keyboard keys
|
||||
else {
|
||||
if (((
|
||||
keycode == KEY_MEDIA_PLAY_PAUSE || keycode == KEY_MEDIA_NEXT_TRACK ||
|
||||
keycode == KEY_F13 || keycode == KEY_F14 ||
|
||||
keycode == KEY_F15 || keycode == KEY_F16 ||
|
||||
keycode == KEY_F17 || keycode == KEY_F18 ||
|
||||
keycode == KEY_F19 || keycode == KEY_F20 ||
|
||||
keycode == KEY_F21 || keycode == KEY_F22 ||
|
||||
keycode == KEY_F23 || keycode == KEY_F24)) ||
|
||||
((
|
||||
keycode != KEY_MEDIA_PLAY_PAUSE && keycode != KEY_MEDIA_NEXT_TRACK &&
|
||||
keycode != KEY_F13 && keycode != KEY_F14 &&
|
||||
keycode != KEY_F15 && keycode != KEY_F16 &&
|
||||
keycode != KEY_F17 && keycode != KEY_F18 &&
|
||||
keycode != KEY_F19 && keycode != KEY_F20 &&
|
||||
keycode != KEY_F21 && keycode != KEY_F22 &&
|
||||
keycode != KEY_F23 && keycode != KEY_F24))
|
||||
) {
|
||||
if (kstate == RELEASED) {
|
||||
else
|
||||
{
|
||||
if (kstate == RELEASED)
|
||||
{
|
||||
Keyboard.release(keycode);
|
||||
} else if (kstate == PRESSED) {
|
||||
}
|
||||
else if (kstate == PRESSED)
|
||||
{
|
||||
Keyboard.press(keycode);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void process_table(byte buttons[][3], const uint16_t keys[][3], int nbr_of_element){
|
||||
for (int i = 0; i < nbr_of_element; i++) {
|
||||
if (buttons[i][2] == PRESSED &&
|
||||
keys[i][0] != KEY_FN1 &&
|
||||
keys[i][0] != KEY_FN2) {
|
||||
// Press key linked to the FN layer for this button
|
||||
if (keys[i][kp_fn_mode] != NO_KEY) {
|
||||
update_key(keys[i][kp_fn_mode], PRESSED);
|
||||
}
|
||||
|
||||
// Check if fn related button is pressed
|
||||
if (kp_fn_mode > 0){
|
||||
fn_kp_key_found = keys[i][0];
|
||||
}
|
||||
}
|
||||
|
||||
else if (buttons[i][2] == RELEASED &&
|
||||
keys[i][0] != KEY_FN1 &&
|
||||
keys[i][0] != KEY_FN2) {
|
||||
|
||||
// Release all keys linked to this button
|
||||
update_key(keys[i][0], RELEASED);
|
||||
|
||||
// Check if fn related button is released
|
||||
if (keys[i][0] == fn_kp_key_found){
|
||||
fn_kp_key_found = 0;
|
||||
}
|
||||
|
||||
// Check to not release the same key one more time
|
||||
if (keys[i][1] != NO_KEY && keys[i][1] != keys[i][0]) {
|
||||
update_key(keys[i][1], RELEASED);
|
||||
}
|
||||
|
||||
// Check to not release the same key one more time
|
||||
if (keys[i][2] != NO_KEY && keys[i][2] != keys[i][0] &&
|
||||
keys[i][2] != keys[i][1]) {
|
||||
update_key(keys[i][2], RELEASED);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < nbr_of_element; i++) {
|
||||
// Tap state:
|
||||
// 0 = idle (not pressed for a while)
|
||||
// 1 = pressed
|
||||
// 2 = released within timeout, pressing tap key
|
||||
// 3 = pressed again within timeout, holding tap key
|
||||
for (int j = 0; j < (sizeof(fn_tap) / sizeof(fn_tap[0])); j++){
|
||||
// Press
|
||||
if (buttons[i][2] == PRESSED && keys[i][0] == fn_tap[j].trigger_keycode) {
|
||||
if (fn_tap[j].state == 0) {
|
||||
fn_tap[j].timeout_timestamp = current_timestamp + fn_tap[j].timeout_time;
|
||||
fn_tap[j].timeout_enable = true;
|
||||
fn_tap[j].release_enable = false;
|
||||
fn_tap[j].state = 1;
|
||||
|
||||
} else if (fn_tap[j].state == 2) {
|
||||
fn_tap[j].timeout_enable = false;
|
||||
fn_tap[j].release_enable = false;
|
||||
fn_tap[j].state = 3;
|
||||
}
|
||||
// Release
|
||||
} else if (buttons[i][2] == RELEASED && keys[i][0] == fn_tap[j].trigger_keycode) {
|
||||
if (fn_tap[j].state == 1) {
|
||||
update_key(fn_tap[j].target_keycode, RELEASED);
|
||||
if (fn_kp_key_found == 0 && fn_tap[j].kp_fn_mode > 0) {
|
||||
update_key(fn_tap[j].target_keycode, PRESSED);
|
||||
fn_tap[j].release_timestamp = current_timestamp + fn_tap[j].timeout_time + 10;
|
||||
fn_tap[j].release_enable = true;
|
||||
fn_tap[j].state = 2;
|
||||
} else {
|
||||
fn_tap[j].timeout_enable = false;
|
||||
fn_tap[j].release_enable = false;
|
||||
fn_tap[j].state = 0;
|
||||
}
|
||||
} else {
|
||||
update_key(fn_tap[j].target_keycode, RELEASED);
|
||||
fn_tap[j].state = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Reset key change status
|
||||
buttons[i][2] = IDLE;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void update_buttons(){
|
||||
void update_buttons()
|
||||
{
|
||||
|
||||
// Scan all buttons
|
||||
if(kp_keypad.getKeys()){
|
||||
if (kp_keypad.getKeys())
|
||||
{
|
||||
|
||||
int reboot = 0;
|
||||
|
||||
// Enter bootloader if all four corner-buttons is pressed together on the left keypad
|
||||
for(int i=0; i<LIST_MAX; i++){
|
||||
if((kp_keypad.key[i].kchar == 1) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD)){
|
||||
for (int i = 0; i < LIST_MAX; i++)
|
||||
{
|
||||
if ((kp_keypad.key[i].kchar == 1) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD))
|
||||
{
|
||||
reboot += 1;
|
||||
}
|
||||
if((kp_keypad.key[i].kchar == 12) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD)){
|
||||
if ((kp_keypad.key[i].kchar == 12) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD))
|
||||
{
|
||||
reboot += 1;
|
||||
}
|
||||
if((kp_keypad.key[i].kchar == 24) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD)){
|
||||
if ((kp_keypad.key[i].kchar == 25) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD))
|
||||
{
|
||||
reboot += 1;
|
||||
}
|
||||
if((kp_keypad.key[i].kchar == 25) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD)){
|
||||
if ((kp_keypad.key[i].kchar == 36) && (kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD))
|
||||
{
|
||||
reboot += 1;
|
||||
}
|
||||
if (reboot == 2) {
|
||||
if ((kp_keypad.key[i].kchar == 2) &&
|
||||
(kp_keypad.key[i].kstate == PRESSED ||
|
||||
kp_keypad.key[i].kstate == HOLD)) {
|
||||
joystick_calibration_mode = CALIBRATION_CENTER;
|
||||
}
|
||||
if ((kp_keypad.key[i].kchar == 3) &&
|
||||
(kp_keypad.key[i].kstate == PRESSED ||
|
||||
kp_keypad.key[i].kstate == HOLD)) {
|
||||
joystick_calibration_mode = CALIBRATION_MINMAX;
|
||||
}
|
||||
if ((kp_keypad.key[i].kchar == 4) &&
|
||||
(kp_keypad.key[i].kstate == PRESSED ||
|
||||
kp_keypad.key[i].kstate == HOLD)) {
|
||||
joystick_calibration_mode = CALIBRATION_OFF;
|
||||
save_to_eeprom();
|
||||
}
|
||||
}
|
||||
if(reboot == 4){
|
||||
if (reboot == 4)
|
||||
{
|
||||
asm("bkpt #251");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Check button press
|
||||
for(int i=0; i<LIST_MAX; i++){
|
||||
if (kp_keypad.key[i].kchar != 0){
|
||||
if(kp_keypad.key[i].stateChanged){
|
||||
if(kp_keypad.key[i].kstate == PRESSED || kp_keypad.key[i].kstate == HOLD){
|
||||
buttons[kp_keypad.key[i].kchar-1] = PRESSED;
|
||||
// ----------------------------------------------------------
|
||||
// Check Fn keys
|
||||
// ----------------------------------------------------------
|
||||
kp_fn_mode = 0;
|
||||
|
||||
// keypad
|
||||
for (int i = 0; i < (sizeof(kp_keys) / sizeof(kp_keys[0])); i++)
|
||||
{
|
||||
if (kp_buttons[i][0] == PRESSED && kp_keys[i][0] == KEY_FN1)
|
||||
{
|
||||
kp_fn_mode = 1;
|
||||
}
|
||||
else if(kp_keypad.key[i].kstate == RELEASED){
|
||||
buttons[kp_keypad.key[i].kchar-1] = RELEASED;
|
||||
if (kp_buttons[i][0] == PRESSED && kp_keys[i][0] == KEY_FN2)
|
||||
{
|
||||
kp_fn_mode = 2;
|
||||
}
|
||||
for (int j = 0; j < (sizeof(tap) / sizeof(tap[0])); j++)
|
||||
{
|
||||
if ((kp_buttons[i][0] == PRESSED && kp_keys[i][0] == tap_keys[j][0] && tap[j].state != 3) &&
|
||||
((tap[j].fn_fast_switch == false && tap[j].state == 0) || (tap[j].fn_fast_switch == true)))
|
||||
{
|
||||
if (tap_keys[j][2] == KEY_FN1)
|
||||
{
|
||||
kp_fn_mode = 1;
|
||||
}
|
||||
else if (tap_keys[j][2] == KEY_FN2)
|
||||
{
|
||||
kp_fn_mode = 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Scan joystick buttons
|
||||
if(joy_keypad.getKeys()){
|
||||
// ----------------------------------------------------------
|
||||
// Check keys
|
||||
// ----------------------------------------------------------
|
||||
for (int i = 0; i < (sizeof(kp_keys) / sizeof(kp_keys[0])); i++)
|
||||
{
|
||||
if (kp_buttons[i][2] == PRESSED &&
|
||||
kp_keys[i][0] != KEY_TAP1 &&
|
||||
kp_keys[i][0] != KEY_TAP2 &&
|
||||
kp_keys[i][0] != KEY_TAP3 &&
|
||||
kp_keys[i][0] != KEY_TAP4 &&
|
||||
kp_keys[i][0] != KEY_TAP5 &&
|
||||
kp_keys[i][0] != KEY_TAP6 &&
|
||||
kp_keys[i][0] != KEY_TAP7 &&
|
||||
kp_keys[i][0] != KEY_FN1 &&
|
||||
kp_keys[i][0] != KEY_FN2)
|
||||
{
|
||||
// Press key linked to the FN layer for this button
|
||||
if (kp_keys[i][kp_fn_mode] != NO_KEY)
|
||||
{
|
||||
update_key(kp_keys[i][kp_fn_mode], PRESSED);
|
||||
}
|
||||
|
||||
// Check button press
|
||||
for(int i=0; i<LIST_MAX; i++){
|
||||
if(joy_keypad.key[i].stateChanged){
|
||||
if(joy_keypad.key[i].kstate == PRESSED || joy_keypad.key[i].kstate == HOLD){
|
||||
buttons[joy_keypad.key[i].kchar-1] = PRESSED;
|
||||
}
|
||||
else if(joy_keypad.key[i].kstate == RELEASED){
|
||||
buttons[joy_keypad.key[i].kchar-1] = RELEASED;
|
||||
// Check if fn related button is pressed
|
||||
if (kp_fn_mode > 0)
|
||||
{
|
||||
fn_kp_key_found = kp_keys[i][0];
|
||||
}
|
||||
}
|
||||
|
||||
else if (kp_buttons[i][2] == RELEASED &&
|
||||
kp_keys[i][0] != KEY_TAP1 &&
|
||||
kp_keys[i][0] != KEY_TAP2 &&
|
||||
kp_keys[i][0] != KEY_TAP3 &&
|
||||
kp_keys[i][0] != KEY_TAP4 &&
|
||||
kp_keys[i][0] != KEY_TAP5 &&
|
||||
kp_keys[i][0] != KEY_TAP6 &&
|
||||
kp_keys[i][0] != KEY_TAP7 &&
|
||||
kp_keys[i][0] != KEY_FN1 &&
|
||||
kp_keys[i][0] != KEY_FN2)
|
||||
{
|
||||
|
||||
// Release all keys linked to this button
|
||||
update_key(kp_keys[i][0], RELEASED);
|
||||
|
||||
// Check if fn related button is released
|
||||
if (kp_keys[i][0] == fn_kp_key_found)
|
||||
{
|
||||
fn_kp_key_found = 0;
|
||||
}
|
||||
|
||||
// Check to not release the same key one more time
|
||||
if (kp_keys[i][1] != NO_KEY && kp_keys[i][1] != kp_keys[i][0])
|
||||
{
|
||||
update_key(kp_keys[i][1], RELEASED);
|
||||
}
|
||||
|
||||
// Check to not release the same key one more time
|
||||
if (kp_keys[i][2] != NO_KEY && kp_keys[i][2] != kp_keys[i][0] &&
|
||||
kp_keys[i][2] != kp_keys[i][1])
|
||||
{
|
||||
update_key(kp_keys[i][2], RELEASED);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// Check tap keys
|
||||
// ----------------------------------------------------------
|
||||
for (int i = 0; i < (sizeof(kp_keys) / sizeof(kp_keys[0])); i++)
|
||||
{
|
||||
// Tap state:
|
||||
// 0 = idle (not pressed for a while)
|
||||
// 1 = pressed
|
||||
// 2 = released within timeout, pressing tap key
|
||||
// 3 = pressed again within timeout, holding tap key
|
||||
for (int j = 0; j < (sizeof(tap) / sizeof(tap[0])); j++)
|
||||
{
|
||||
// Press
|
||||
if (kp_buttons[i][2] == PRESSED && kp_keys[i][0] == tap_keys[j][0])
|
||||
{
|
||||
if (tap[j].state == 0)
|
||||
{
|
||||
tap[j].timeout_timestamp = current_timestamp + tap[j].timeout_time;
|
||||
tap[j].timeout_enable = true;
|
||||
tap[j].release_enable = false;
|
||||
tap[j].state = 1;
|
||||
}
|
||||
else if (tap[j].state == 2)
|
||||
{
|
||||
tap[j].timeout_enable = false;
|
||||
tap[j].release_enable = false;
|
||||
tap[j].state = 3;
|
||||
}
|
||||
// Release
|
||||
}
|
||||
else if (kp_buttons[i][2] == RELEASED && kp_keys[i][0] == tap_keys[j][0])
|
||||
{
|
||||
if (tap[j].state == 1)
|
||||
{
|
||||
update_key(tap_keys[j][1], RELEASED);
|
||||
|
||||
if (tap_keys[j][2] != KEY_FN1 && tap_keys[j][2] != KEY_FN2)
|
||||
{
|
||||
update_key(tap_keys[j][2], RELEASED);
|
||||
}
|
||||
|
||||
if (fn_kp_key_found == 0 && (tap_keys[j][2] == KEY_FN1 || tap_keys[j][2] == KEY_FN2))
|
||||
{
|
||||
update_key(tap_keys[j][1], PRESSED);
|
||||
tap[j].release_timestamp = current_timestamp + tap[j].timeout_time + 10;
|
||||
tap[j].release_enable = true;
|
||||
tap[j].state = 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
tap[j].timeout_enable = false;
|
||||
tap[j].release_enable = false;
|
||||
tap[j].state = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
update_key(tap_keys[j][1], RELEASED);
|
||||
tap[j].state = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Reset key change status
|
||||
kp_buttons[i][2] = IDLE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void setup() {
|
||||
void setup()
|
||||
{
|
||||
|
||||
// Turn on and off power led.
|
||||
pinMode(POWER_LED, OUTPUT);
|
||||
digitalWrite(POWER_LED, LOW);
|
||||
|
||||
// Set ADC resolution to 12bit
|
||||
analogReadResolution(12);
|
||||
analogReadAveraging(32);
|
||||
delay(500);
|
||||
|
||||
myusb.begin();
|
||||
|
||||
load_from_eeprom();
|
||||
// initialize Dotstar strip
|
||||
strip.begin();
|
||||
strip.setPixelColor(0, 0, 0, 0);
|
||||
strip.setPixelColor(1, 0, 0, 0);
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
void loop()
|
||||
{
|
||||
|
||||
current_timestamp = millis();
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// Update joystick values as often as possible
|
||||
// Check keys
|
||||
// ----------------------------------------------------------
|
||||
update_analog();
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// Update USB host
|
||||
// ----------------------------------------------------------
|
||||
myusb.Task();
|
||||
update_buttons();
|
||||
|
||||
// Update button status every 100 millisecond as fallback
|
||||
// to be able to enter bootloader
|
||||
// ----------------------------------------------------------
|
||||
if (current_timestamp >= button_timestamp) {
|
||||
if (current_timestamp >= button_timestamp)
|
||||
{
|
||||
update_buttons();
|
||||
button_timestamp = current_timestamp + 100;
|
||||
}
|
||||
@ -422,34 +475,51 @@ void loop() {
|
||||
// ----------------------------------------------------------
|
||||
// Update mouse wheel
|
||||
// ----------------------------------------------------------
|
||||
if (current_timestamp >= mouse_wheel_timestamp && mouse_wheel != 0) {
|
||||
if (current_timestamp >= mouse_wheel_timestamp && mouse_wheel != 0)
|
||||
{
|
||||
Mouse.move(0, 0, mouse_wheel);
|
||||
mouse_wheel_timestamp = current_timestamp + 20;
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// Fn tap timeout
|
||||
// Tap timeout
|
||||
// ----------------------------------------------------------
|
||||
for (int j = 0; j < (sizeof(fn_tap) / sizeof(fn_tap[0])); j++){
|
||||
if (current_timestamp >= fn_tap[j].timeout_timestamp && fn_tap[j].timeout_enable) {
|
||||
if (fn_tap[j].state == 1 || fn_tap[j].state == 2) {
|
||||
fn_tap[j].state = 0;
|
||||
for (int j = 0; j < (sizeof(tap) / sizeof(tap[0])); j++)
|
||||
{
|
||||
if (current_timestamp >= tap[j].timeout_timestamp && tap[j].timeout_enable)
|
||||
{
|
||||
if (tap[j].state == 1 || tap[j].state == 2)
|
||||
{
|
||||
tap[j].state = 0;
|
||||
update_key(tap_keys[j][2], PRESSED);
|
||||
}
|
||||
fn_tap[j].timeout_enable = false;
|
||||
tap[j].timeout_enable = false;
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// Fn tap release
|
||||
// Tap release
|
||||
// ----------------------------------------------------------
|
||||
for (int j = 0; j < (sizeof(fn_tap) / sizeof(fn_tap[0])); j++){
|
||||
if (current_timestamp >= fn_tap[j].release_timestamp && fn_tap[j].release_enable) {
|
||||
update_key(fn_tap[j].target_keycode, RELEASED);
|
||||
fn_tap[j].release_enable = false;
|
||||
fn_tap[j].state = 0;
|
||||
Joystick.send_now();
|
||||
for (int j = 0; j < (sizeof(tap) / sizeof(tap[0])); j++)
|
||||
{
|
||||
if (current_timestamp >= tap[j].release_timestamp && tap[j].release_enable)
|
||||
{
|
||||
update_key(tap_keys[j][1], RELEASED);
|
||||
tap[j].release_enable = false;
|
||||
tap[j].state = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------
|
||||
// Update LED indication
|
||||
// ----------------------------------------------------------
|
||||
if (current_timestamp >= indicator_timestamp)
|
||||
{
|
||||
indicator_timestamp = current_timestamp + 50;
|
||||
|
||||
strip.setPixelColor(0, 8, 15, 1);
|
||||
strip.setPixelColor(1, 8, 15, 1);
|
||||
|
||||
strip.show();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user