Implement storage auto-discovery system
All checks were successful
Build and Release / build-and-release (push) Successful in 1m49s

- Add automatic detection of mergerfs pools by parsing /proc/mounts
- Implement smart heuristics for parity disk identification
- Store discovered topology at agent startup for efficient monitoring
- Eliminate need for manual storage pool configuration
- Support zero-config storage visualization with backward compatibility
- Clean up mount parsing and remove unused fields
This commit is contained in:
Christoffer Martinsson 2025-11-23 11:44:57 +01:00
parent f9384d9df6
commit 33b3beb342
6 changed files with 452 additions and 17 deletions

View File

@ -144,6 +144,81 @@ nix-build --no-out-link -E 'with import <nixpkgs> {}; fetchurl {
- **Workspace builds**: `nix-shell -p openssl pkg-config --run "cargo build --workspace"`
- **Clean compilation**: Remove `target/` between major changes
## Enhanced Storage Pool Visualization
### Auto-Discovery Architecture
The dashboard uses automatic storage discovery to eliminate manual configuration complexity while providing intelligent storage pool grouping.
### Discovery Process
**At Agent Startup:**
1. Parse `/proc/mounts` to identify all mounted filesystems
2. Detect MergerFS pools by analyzing `fuse.mergerfs` mount sources
3. Identify member disks and potential parity relationships via heuristics
4. Store discovered storage topology for continuous monitoring
5. Generate pool-aware metrics with hierarchical relationships
**Continuous Monitoring:**
- Use stored discovery data for efficient metric collection
- Monitor individual drives for SMART data, temperature, wear
- Calculate pool-level health based on member drive status
- Generate enhanced metrics for dashboard visualization
### Supported Storage Types
**Single Disks:**
- ext4, xfs, btrfs mounted directly
- Individual drive monitoring with SMART data
- Traditional single-disk display for root, boot, etc.
**MergerFS Pools:**
- Auto-detect from `/proc/mounts` fuse.mergerfs entries
- Parse source paths to identify member disks (e.g., "/mnt/disk1:/mnt/disk2")
- Heuristic parity disk detection (sequential device names, "parity" in path)
- Pool health calculation (healthy/degraded/critical)
- Hierarchical tree display with data/parity disk grouping
**Future Extensions Ready:**
- RAID arrays via `/proc/mdstat` parsing
- ZFS pools via `zpool status` integration
- LVM logical volumes via `lvs` discovery
### Configuration
```toml
[collectors.disk]
enabled = true
auto_discover = true # Default: true
# Optional exclusions for special filesystems
exclude_mount_points = ["/tmp", "/proc", "/sys", "/dev"]
exclude_fs_types = ["tmpfs", "devtmpfs", "sysfs", "proc"]
```
### Display Format
```
Storage:
● /srv/media (mergerfs (2+1)):
├─ Pool Status: ● Healthy (3 drives)
├─ Total: ● 63% 2355.2GB/3686.4GB
├─ Data Disks:
│ ├─ ● sdb T: 24°C
│ └─ ● sdd T: 27°C
└─ Parity: ● sdc T: 24°C
● /:
├─ ● nvme0n1 W: 13%
└─ ● 7% 14.5GB/218.5GB
```
### Implementation Benefits
- **Zero Configuration**: No manual pool definitions required
- **Always Accurate**: Reflects actual system state automatically
- **Scales Automatically**: Handles any number of pools without config changes
- **Backwards Compatible**: Single disks continue working unchanged
- **Future Ready**: Easy extension for additional storage technologies
## Important Communication Guidelines
Keep responses concise and focused. Avoid extensive implementation summaries unless requested.

6
Cargo.lock generated
View File

@ -279,7 +279,7 @@ checksum = "a1d728cc89cf3aee9ff92b05e62b19ee65a02b5702cff7d5a377e32c6ae29d8d"
[[package]]
name = "cm-dashboard"
version = "0.1.98"
version = "0.1.99"
dependencies = [
"anyhow",
"chrono",
@ -301,7 +301,7 @@ dependencies = [
[[package]]
name = "cm-dashboard-agent"
version = "0.1.98"
version = "0.1.99"
dependencies = [
"anyhow",
"async-trait",
@ -324,7 +324,7 @@ dependencies = [
[[package]]
name = "cm-dashboard-shared"
version = "0.1.98"
version = "0.1.99"
dependencies = [
"chrono",
"serde",

View File

@ -1,6 +1,6 @@
[package]
name = "cm-dashboard-agent"
version = "0.1.99"
version = "0.1.100"
edition = "2021"
[dependencies]

View File

@ -5,10 +5,34 @@ use cm_dashboard_shared::{Metric, MetricValue, Status, StatusTracker, Hysteresis
use crate::config::DiskConfig;
use std::process::Command;
use std::time::Instant;
use std::fs;
use tracing::debug;
use super::{Collector, CollectorError};
/// Mount point information from /proc/mounts
#[derive(Debug, Clone)]
struct MountInfo {
device: String, // e.g., "/dev/sda1" or "/mnt/disk1:/mnt/disk2"
mount_point: String, // e.g., "/", "/srv/media"
fs_type: String, // e.g., "ext4", "xfs", "fuse.mergerfs"
}
/// Auto-discovered storage topology
#[derive(Debug, Clone)]
struct StorageTopology {
single_disks: Vec<MountInfo>,
mergerfs_pools: Vec<MergerfsPoolInfo>,
}
/// MergerFS pool information
#[derive(Debug, Clone)]
struct MergerfsPoolInfo {
mount_point: String, // e.g., "/srv/media"
data_members: Vec<String>, // e.g., ["/mnt/disk1", "/mnt/disk2"]
parity_disks: Vec<String>, // e.g., ["/mnt/parity"]
}
/// Information about a storage pool (mount point with underlying drives)
#[derive(Debug, Clone)]
struct StoragePool {
@ -70,6 +94,7 @@ pub struct DiskCollector {
config: DiskConfig,
temperature_thresholds: HysteresisThresholds,
detected_devices: std::collections::HashMap<String, Vec<String>>, // mount_point -> devices
storage_topology: Option<StorageTopology>, // Auto-discovered storage layout
}
impl DiskCollector {
@ -82,12 +107,57 @@ impl DiskCollector {
5.0, // 5°C gap for recovery
);
// Detect devices for all configured filesystems at startup
// Perform auto-discovery of storage topology
let storage_topology = match Self::auto_discover_storage() {
Ok(topology) => {
debug!("Auto-discovered storage topology: {} single disks, {} mergerfs pools",
topology.single_disks.len(), topology.mergerfs_pools.len());
Some(topology)
}
Err(e) => {
debug!("Failed to auto-discover storage topology: {}", e);
None
}
};
// Detect devices for discovered storage
let mut detected_devices = std::collections::HashMap::new();
for fs_config in &config.filesystems {
if fs_config.monitor {
if let Ok(devices) = Self::detect_device_for_mount_point_static(&fs_config.mount_point) {
detected_devices.insert(fs_config.mount_point.clone(), devices);
if let Some(ref topology) = storage_topology {
// Add single disks
for disk in &topology.single_disks {
if let Ok(devices) = Self::detect_device_for_mount_point_static(&disk.mount_point) {
detected_devices.insert(disk.mount_point.clone(), devices);
}
}
// Add mergerfs pools and their members
for pool in &topology.mergerfs_pools {
// Detect devices for the pool itself
if let Ok(devices) = Self::detect_device_for_mount_point_static(&pool.mount_point) {
detected_devices.insert(pool.mount_point.clone(), devices);
}
// Detect devices for member disks
for member in &pool.data_members {
if let Ok(devices) = Self::detect_device_for_mount_point_static(member) {
detected_devices.insert(member.clone(), devices);
}
}
// Detect devices for parity disks
for parity in &pool.parity_disks {
if let Ok(devices) = Self::detect_device_for_mount_point_static(parity) {
detected_devices.insert(parity.clone(), devices);
}
}
}
} else {
// Fallback: use legacy filesystem config detection
for fs_config in &config.filesystems {
if fs_config.monitor {
if let Ok(devices) = Self::detect_device_for_mount_point_static(&fs_config.mount_point) {
detected_devices.insert(fs_config.mount_point.clone(), devices);
}
}
}
}
@ -96,21 +166,313 @@ impl DiskCollector {
config,
temperature_thresholds,
detected_devices,
storage_topology,
}
}
/// Auto-discover storage topology by parsing system information
fn auto_discover_storage() -> Result<StorageTopology> {
let mounts = Self::parse_proc_mounts()?;
let mut single_disks = Vec::new();
let mut mergerfs_pools = Vec::new();
// Filter out unwanted filesystem types and mount points
let exclude_fs_types = ["tmpfs", "devtmpfs", "sysfs", "proc", "cgroup", "cgroup2", "devpts"];
let exclude_mount_prefixes = ["/proc", "/sys", "/dev", "/tmp", "/run"];
for mount in mounts {
// Skip excluded filesystem types
if exclude_fs_types.contains(&mount.fs_type.as_str()) {
continue;
}
// Skip excluded mount point prefixes
if exclude_mount_prefixes.iter().any(|prefix| mount.mount_point.starts_with(prefix)) {
continue;
}
match mount.fs_type.as_str() {
"fuse.mergerfs" => {
// Parse mergerfs pool
let data_members = Self::parse_mergerfs_sources(&mount.device);
let parity_disks = Self::detect_parity_disks(&data_members);
mergerfs_pools.push(MergerfsPoolInfo {
mount_point: mount.mount_point.clone(),
data_members,
parity_disks,
});
debug!("Discovered mergerfs pool at {}", mount.mount_point);
}
"ext4" | "xfs" | "btrfs" | "ntfs" | "vfat" => {
// Check if this mount is part of a mergerfs pool
let is_mergerfs_member = mergerfs_pools.iter()
.any(|pool| pool.data_members.contains(&mount.mount_point) ||
pool.parity_disks.contains(&mount.mount_point));
if !is_mergerfs_member {
debug!("Discovered single disk at {}", mount.mount_point);
single_disks.push(mount);
}
}
_ => {
debug!("Skipping unsupported filesystem type: {}", mount.fs_type);
}
}
}
Ok(StorageTopology {
single_disks,
mergerfs_pools,
})
}
/// Parse /proc/mounts to get all mount information
fn parse_proc_mounts() -> Result<Vec<MountInfo>> {
let mounts_content = fs::read_to_string("/proc/mounts")?;
let mut mounts = Vec::new();
for line in mounts_content.lines() {
let parts: Vec<&str> = line.split_whitespace().collect();
if parts.len() >= 3 {
mounts.push(MountInfo {
device: parts[0].to_string(),
mount_point: parts[1].to_string(),
fs_type: parts[2].to_string(),
});
}
}
Ok(mounts)
}
/// Parse mergerfs source string to extract member paths
fn parse_mergerfs_sources(source: &str) -> Vec<String> {
// MergerFS source format: "/mnt/disk1:/mnt/disk2:/mnt/disk3"
source.split(':')
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty())
.collect()
}
/// Detect potential parity disks based on data member heuristics
fn detect_parity_disks(data_members: &[String]) -> Vec<String> {
let mut parity_disks = Vec::new();
// Heuristic 1: Look for mount points with "parity" in the name
if let Ok(mounts) = Self::parse_proc_mounts() {
for mount in mounts {
if mount.mount_point.to_lowercase().contains("parity") &&
(mount.fs_type == "xfs" || mount.fs_type == "ext4") {
debug!("Detected parity disk by name: {}", mount.mount_point);
parity_disks.push(mount.mount_point);
}
}
}
// Heuristic 2: Look for sequential device pattern
// If data members are /mnt/disk1, /mnt/disk2, look for /mnt/disk* that's not in data
if parity_disks.is_empty() {
if let Some(pattern) = Self::extract_mount_pattern(data_members) {
if let Ok(mounts) = Self::parse_proc_mounts() {
for mount in mounts {
if mount.mount_point.starts_with(&pattern) &&
!data_members.contains(&mount.mount_point) &&
(mount.fs_type == "xfs" || mount.fs_type == "ext4") {
debug!("Detected parity disk by pattern: {}", mount.mount_point);
parity_disks.push(mount.mount_point);
}
}
}
}
}
parity_disks
}
/// Extract common mount point pattern from data members
fn extract_mount_pattern(data_members: &[String]) -> Option<String> {
if data_members.is_empty() {
return None;
}
// Find common prefix (e.g., "/mnt/disk" from "/mnt/disk1", "/mnt/disk2")
let first = &data_members[0];
if let Some(last_slash) = first.rfind('/') {
let base = &first[..last_slash + 1]; // Include the slash
// Check if all members share this base
if data_members.iter().all(|member| member.starts_with(base)) {
return Some(base.to_string());
}
}
None
}
/// Calculate disk temperature status using hysteresis thresholds
fn calculate_temperature_status(&self, metric_name: &str, temperature: f32, status_tracker: &mut StatusTracker) -> Status {
status_tracker.calculate_with_hysteresis(metric_name, temperature, &self.temperature_thresholds)
}
/// Get configured storage pools with individual drive information
/// Get storage pools using auto-discovered topology or fallback to configuration
fn get_configured_storage_pools(&self) -> Result<Vec<StoragePool>> {
if let Some(ref topology) = self.storage_topology {
self.get_auto_discovered_storage_pools(topology)
} else {
self.get_legacy_configured_storage_pools()
}
}
/// Get storage pools from auto-discovered topology
fn get_auto_discovered_storage_pools(&self, topology: &StorageTopology) -> Result<Vec<StoragePool>> {
let mut storage_pools = Vec::new();
// Process single disks
for disk_info in &topology.single_disks {
if let Ok((total_bytes, used_bytes)) = self.get_filesystem_info(&disk_info.mount_point) {
let available_bytes = total_bytes - used_bytes;
let usage_percent = if total_bytes > 0 {
(used_bytes as f64 / total_bytes as f64) * 100.0
} else { 0.0 };
let size = self.bytes_to_human_readable(total_bytes);
let used = self.bytes_to_human_readable(used_bytes);
let available = self.bytes_to_human_readable(available_bytes);
let device_names = self.detected_devices.get(&disk_info.mount_point).cloned().unwrap_or_default();
let underlying_drives = self.get_drive_info_for_devices(&device_names)?;
// Generate simple name from mount point
let name = if disk_info.mount_point == "/" {
"root".to_string()
} else {
disk_info.mount_point.trim_start_matches('/').replace('/', "_")
};
storage_pools.push(StoragePool {
name,
mount_point: disk_info.mount_point.clone(),
filesystem: disk_info.fs_type.clone(),
pool_type: StoragePoolType::Single,
size,
used,
available,
usage_percent: usage_percent as f32,
underlying_drives,
pool_health: PoolHealth::Healthy,
});
debug!("Auto-discovered single disk: {} at {}", disk_info.fs_type, disk_info.mount_point);
}
}
// Process mergerfs pools
for pool_info in &topology.mergerfs_pools {
if let Ok((total_bytes, used_bytes)) = self.get_filesystem_info(&pool_info.mount_point) {
let available_bytes = total_bytes - used_bytes;
let usage_percent = if total_bytes > 0 {
(used_bytes as f64 / total_bytes as f64) * 100.0
} else { 0.0 };
let size = self.bytes_to_human_readable(total_bytes);
let used = self.bytes_to_human_readable(used_bytes);
let available = self.bytes_to_human_readable(available_bytes);
// Collect all member and parity drives
let mut all_drives = Vec::new();
// Add data member drives
for member in &pool_info.data_members {
if let Some(devices) = self.detected_devices.get(member) {
all_drives.extend(devices.clone());
}
}
// Add parity drives
for parity in &pool_info.parity_disks {
if let Some(devices) = self.detected_devices.get(parity) {
all_drives.extend(devices.clone());
}
}
let underlying_drives = self.get_drive_info_for_devices(&all_drives)?;
// Calculate pool health
let pool_health = self.calculate_mergerfs_pool_health(&pool_info.data_members, &pool_info.parity_disks, &underlying_drives);
// Generate pool name from mount point
let name = pool_info.mount_point.trim_start_matches('/').replace('/', "_");
storage_pools.push(StoragePool {
name,
mount_point: pool_info.mount_point.clone(),
filesystem: "fuse.mergerfs".to_string(),
pool_type: StoragePoolType::MergerfsPool {
data_disks: pool_info.data_members.iter()
.filter_map(|member| self.detected_devices.get(member).and_then(|devices| devices.first().cloned()))
.collect(),
parity_disks: pool_info.parity_disks.iter()
.filter_map(|parity| self.detected_devices.get(parity).and_then(|devices| devices.first().cloned()))
.collect(),
},
size,
used,
available,
usage_percent: usage_percent as f32,
underlying_drives,
pool_health,
});
debug!("Auto-discovered mergerfs pool: {} with {} data + {} parity disks",
pool_info.mount_point, pool_info.data_members.len(), pool_info.parity_disks.len());
}
}
Ok(storage_pools)
}
/// Calculate pool health specifically for mergerfs pools
fn calculate_mergerfs_pool_health(&self, data_members: &[String], parity_disks: &[String], drives: &[DriveInfo]) -> PoolHealth {
// Get device names for data and parity drives
let mut data_device_names = Vec::new();
let mut parity_device_names = Vec::new();
for member in data_members {
if let Some(devices) = self.detected_devices.get(member) {
data_device_names.extend(devices.clone());
}
}
for parity in parity_disks {
if let Some(devices) = self.detected_devices.get(parity) {
parity_device_names.extend(devices.clone());
}
}
let failed_data = drives.iter()
.filter(|d| data_device_names.contains(&d.device) && d.health_status != "PASSED")
.count();
let failed_parity = drives.iter()
.filter(|d| parity_device_names.contains(&d.device) && d.health_status != "PASSED")
.count();
match (failed_data, failed_parity) {
(0, 0) => PoolHealth::Healthy,
(1, 0) => PoolHealth::Degraded, // Can recover with parity
(0, 1) => PoolHealth::Degraded, // Lost parity protection
_ => PoolHealth::Critical, // Multiple failures
}
}
/// Fallback to legacy configuration-based storage pools
fn get_legacy_configured_storage_pools(&self) -> Result<Vec<StoragePool>> {
let mut storage_pools = Vec::new();
let mut processed_pools = std::collections::HashSet::new();
// First pass: Create enhanced pools (mergerfs, etc.)
// Legacy implementation: use filesystem configuration
for fs_config in &self.config.filesystems {
if !fs_config.monitor {
continue;
@ -147,9 +509,7 @@ impl DiskCollector {
let available_bytes = total_bytes - used_bytes;
let usage_percent = if total_bytes > 0 {
(used_bytes as f64 / total_bytes as f64) * 100.0
} else {
0.0
};
} else { 0.0 };
// Convert bytes to human-readable format
let size = self.bytes_to_human_readable(total_bytes);
@ -177,7 +537,7 @@ impl DiskCollector {
});
debug!(
"Storage pool '{}' ({:?}) at {} with {} drives, health: {:?}",
"Legacy configured storage pool '{}' ({:?}) at {} with {} drives, health: {:?}",
fs_config.name, pool_type, fs_config.mount_point, drive_count, pool_health
);
}

View File

@ -1,6 +1,6 @@
[package]
name = "cm-dashboard"
version = "0.1.99"
version = "0.1.100"
edition = "2021"
[dependencies]

View File

@ -1,6 +1,6 @@
[package]
name = "cm-dashboard-shared"
version = "0.1.99"
version = "0.1.100"
edition = "2021"
[dependencies]